Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 5, pp 398–403 | Cite as

Electrically Controlled Magnetoresistance in Ion-Gated Platinum Thin Films

  • Kil-Joon Min
  • Dong-Hun Chae
  • Dongseuk Kim
  • Jeehoon Jeon
  • Taeyueb Kim
  • Sungjung JooEmail author
Article
  • 2 Downloads

Abstract

Electric-field-induced correlated states of matter are an important topic in solid-state research. The recent revival of the ionic gating technique allows modulation of the carrier density even on metal surfaces. Here, we show that the anomalous magnetoresistance induced in ion-gated paramagnetic platinum thin films can be analyzed in the framework of an induced ferromagnetic phase on a platinum surface. The temperature dependence of the anomalous Hall component extracted from the observed superlinear Hall resistance was described well by using the Bloch equation for ferromagnetism. Moreover, a negative longitudinal magnetoresistance was observed at small angles between the film’s plane and magnetic field, consistent with the behavior of ferromagnetic metal alloys.

Keywords

Anomalous Hall effect Induced magnetism Ionic gating 

PACS numbers

75.47.−m 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by “Enhancement of Measurement and Standards Technologies in Physical SI Units” funded by the Korea Research Institute of Standards and Science (KRISS-2019-GP2019-0001), the Future Materials Discovery Program through the National Research Foundation of Korea (No. 2015M3D1 A1070467) and a National Research Council of Science & Technology (NST) grant (No. CAP-16-01-KIST) from the Korean government (MSIP).

References

  1. [1]
    A. H. MacDonald et al., Phys. Rev. B 23, 6377 (1981).ADSCrossRefGoogle Scholar
  2. [2]
    M. M. Sigalas and D. A. Papaconstantopoulos, Phys. Rev. B 50, 7255 (1994).ADSCrossRefGoogle Scholar
  3. [3]
    A. Delin and E. Tosatti, Phys. Rev. B 68, 144434 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Sakamoto et al., Phys. Rev. B 83, 104420 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    Y. B. Kudasov and A. S. Korshunov, Phys. Lett. A 364, 348 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    Y. Sun, J. D. Burton and E. Y. Tsymbal, Phys. Rev. B 81, 064413 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    G. Bonfiglioli, E. Coen and R. Malvano, Phys. Rev. 101, 1281 (1956).ADSCrossRefGoogle Scholar
  8. [8]
    R. E. Glover and M. D. Sherrill, Phys. Rev. Lett. 5, 248 (1960).ADSCrossRefGoogle Scholar
  9. [9]
    D. Daghero et al., Phys. Rev. Lett. 108, 066807 (2012).ADSCrossRefGoogle Scholar
  10. [10]
    S. Shimizu et al., Phys. Rev. Lett. 111, 216803 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    J. Choi et al., Appl. Phys. Lett. 105, 012601 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    L. Liang et al., Phys. Rev. B 98, 134402 (2018).ADSCrossRefGoogle Scholar
  13. [13]
    L. Liang et al., Sci. Adv. 4, eaar 2030 (2018).ADSCrossRefGoogle Scholar
  14. [14]
    T. R. McGuire, AIP Conf. Proc. 24, 435 (1975).ADSCrossRefGoogle Scholar
  15. [15]
    A. Milner et al., Phys. Rev. Lett. 76, 475 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    H. Hoffmann, F. Hofmann and W. Schoepe, Phys. Rev. B 25, 5563 (1982).ADSCrossRefGoogle Scholar
  17. [17]
    R. F. C. Farrow et al., J. Cryst. Growth 133, 47 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    D. Krstovska, E. Steven, A. Kiswandhi and J. S. Brooks, Contrib. Sect. Nat. Math. Biotech. Sci. 35, 75 (2014).Google Scholar
  20. [20]
    R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).ADSCrossRefGoogle Scholar
  21. [21]
    C. L. Chien and C. R. Westgate, The Hall Effect and Its Applications (Springer, 2013).Google Scholar
  22. [22]
    M. Ziese and M. J. Thornton, Spin Electronics (Springer, 2001).Google Scholar
  23. [23]
    A. Arrott, Phys. Rev. 108, 1394 (1957).ADSCrossRefGoogle Scholar
  24. [24]
    H. Ohno et al., Nature 408, 944 (2000).ADSCrossRefGoogle Scholar
  25. [25]
    E. Fawcett, Adv. Phys. 13, 139 (1964).ADSCrossRefGoogle Scholar
  26. [26]
    D. H. Dye, J. B. Ketterson and G. W. Crabtree, J. Low Temp. Phys. 30, 813 (1978).ADSCrossRefGoogle Scholar
  27. [27]
    D. Feng and G. Jin, Introduction to Condensed Matter Physics (World Scientific, 2005).Google Scholar
  28. [28]
    T. R. Mcguire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Kil-Joon Min
    • 1
    • 2
  • Dong-Hun Chae
    • 1
    • 2
  • Dongseuk Kim
    • 3
  • Jeehoon Jeon
    • 4
  • Taeyueb Kim
    • 1
    • 4
  • Sungjung Joo
    • 1
    Email author
  1. 1.Center for Electromagnetic MetrologyKorea Research Institute of Science and TechnologyDaejeonKorea
  2. 2.Nano ScienceUniversity of Science and TechnologyDaejeaonKorea
  3. 3.Spin Convergence Research TeamKorea Research Institute of Science and TechnologyDaejeonKorea
  4. 4.Convergence of SpintronicsKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations