Journal of the Korean Physical Society

, Volume 75, Issue 5, pp 367–372 | Cite as

Methane Disintegration by Water Vapor in a Hot Chamber heated by Using a Microwave Steam Torch

  • Chang H. ChoiEmail author
  • Joo Y. Lee
  • Dong J. Kim
  • Sang G. Woo
  • Han S. Uhm


An analysis of the behaviors of water and methane in a hot chamber indicates that methane and water molecules mutually help to disintegrate each other. Oxygen atoms from water disintegrate methane, and methane also self-dissociates. A substantial dissociation of methane by these processes occurs at chamber temperatures higher than T = 1500 K. Methyl (CH3) from these dissociations is very instrumental for the disintegration of water molecules. Meanwhile, the majority of methyl molecules undergo disintegration by oxygen atom, producing an abundance of formaldehyde (CH2O), which self-dissociates immediately to carbon monoxide and hydrogen molecules. Hydroxyl (OH) may convert carbon monoxide to carbon dioxide at a very high temperature of T = 1900 K. An experimental observation shows that methane dissociates in a hot steam chamber heated by a microwave torch. Methane disintegrates completely at temperature higher than 1200 °C (= 1480 K) without any catalyst, as expected from the analytical study.


Steam Plasma Gasification Hydrogen Production Methane 

PACS numbers

52.25.−b 51.10.+y 88.05.−b 88.05.Bc 88.05.Gh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the 2017 Open R&D Program of the Korea Electric Power Corporation (KEPCO) under Grant R17EH02. Dr. Yong C. Hong helped with steam plasma torch and Dr. Jin H. Kim also helped with use of the gas analyzer.


  1. [1]
    T. Riis, E. F. Hagen, J. S. P. Vie and Q. Ulleberg, Hydrogen Production and Storage (Interaction Energy Publication, France, 2006).Google Scholar
  2. [2]
    T. Lipman, An Overview of Hydrogen Production and Stogage System with Renewable Hydrogen Case Studies (Clean Energy States Alliance, Montpelier, VT, 2011).Google Scholar
  3. [3]
    R. O’Hayre, S. W. Cha, W. Colella and F. B. Prinz, Clean Energy States Alliance Fuel Cell Fundamentals (John Wiley & Sons, New York, NY, 2006), p. 294.Google Scholar
  4. [4]
    J. M. Ogden, Review of Small Stationary Reformers for Hydrogen Production, Center for Energy and Environmental Studies (CEES) (Princeton, NJ, 2001).Google Scholar
  5. [5]
    J. B. Lakeman and D. J. Browning, Global Status of Hydrogen Research in: Defense Evaluation and Research Agency as Part of the DTI Sustainable Energy Programs (2001).Google Scholar
  6. [6]
    D. H. Choi, S. M. Chun, S. H. Ma and Y. C. Hong, J. Indust. Engin. Chem. 34, 286 (2016).CrossRefGoogle Scholar
  7. [7]
    D. L. Baulch et al., J. Phys. Chem. Ref. Data 21, 411 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    A. Miyoshi, K. Ohmori, K. Tsuchiya and H. Matsui, Chem. Phys. Lett. 204, 241 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).ADSCrossRefGoogle Scholar
  10. [10]
    D. L. Baulch et al., J. Phys. Chem. Ref. Data 23, 847 (1994).ADSCrossRefGoogle Scholar
  11. [11]
    W. Tsang, J. Phys. Chem. Ref. Data 16, 471 (1987).ADSCrossRefGoogle Scholar
  12. [12]
    T. Miyauchi, Y. Mori and A. Imamura, Int. Combust. Proc. 16, 1073 (1977).CrossRefGoogle Scholar
  13. [13]
    H. S. Uhm, J. H. Kim and Y. C. Hong, Appl. Phys. Lett. 90, 211502 (2007).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Chang H. Choi
    • 1
    Email author
  • Joo Y. Lee
    • 1
  • Dong J. Kim
    • 1
  • Sang G. Woo
    • 1
  • Han S. Uhm
    • 1
  1. 1.New Industry Convergence Technology R&D CenterAjou UniversitySuwonKorea

Personalised recommendations