Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 5, pp 362–366 | Cite as

Effect of a Patterned Sapphire Substrate on InGaN-Based p-i-n Ultraviolet Photodetectors

  • Hyun-Jin Lee
  • Seung-Hye Baek
  • Hyunseok Na
  • Sung-Nam LeeEmail author
Article
  • 10 Downloads

Abstract

InGaN/GaN multi-quantum well (MQW) structures were used as an intrinsic semiconductor in InGaN-based p-i-n ultraviolet photodetectors (PDs). The cut-off wavelengths of the PDs grown on normal sapphire substrates (NSSs) and on patterned sapphire substrates (PSSs) were 445 and 450 nm, respectively, which is consistent with the photoluminescence emission wavelength. From the crystal and optical analyses, we found that the crystallinity and the absorption of the PDs grown on PSSs were superior to those of the PDs grown on NSSs. The maximum photoreactivities of the PDs grown on PSSs and on NSSs were 0.176 A/W and 0.109 A/W, respectively. In addition, the external quantum efficiencies of those PDs were 56.1% and 34.8%, respectively. From these results, we suggest that a PSS can play an important role in achieving a high reactivity and external quantum efficiency for InGaN-based PDs due to improved crystallinity and decreased optical absorption in the sapphire substrate.

Keywords

GaN Photodetector Quantum well MOCVD 

PACS numbers

42.81.Pa 68.47.Fg 78.55.Cr 78.67.De 81.15.Gh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by a Research Program (NRF-2017R1D1A1B03031311) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology, Republic of Korea.

References

  1. [1]
    G. J. Jeong et al., Appl. Phys. Lett. 106, 031118 (2015).ADSCrossRefGoogle Scholar
  2. [2]
    S. J. Jung, K. R. Song, S. N. Lee and H. Kim, Adv. Mat. 25, 4470 (2013).CrossRefGoogle Scholar
  3. [3]
    S. N. Lee et al., Appl. Phys. Lett. 93, 091109 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    G. Wang et al., IEEE Photon. Tech. Lett. 25, 652 (2013).ADSCrossRefGoogle Scholar
  5. [5]
    E. Munoz, Phys. Status Solidi B 244, 2859 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    S. J. Chang et al., IEEE Photon. Tech. Lett. 20, 1866 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    C. Rivera, J. L. Pau and E. Munoz, Appl. Phys. Lett. 89, 264505 (2006).CrossRefGoogle Scholar
  8. [8]
    O. Katz et al., Appl. Phys. Lett. 79, 1419 (2001).ADSGoogle Scholar
  9. [9]
    S. F. Chichibu et al., Nature Mater. 5, 810 (2006).ADSCrossRefGoogle Scholar
  10. [10]
    J. Pereiro et al., IEEE J. Quantum Electron. 45, 617 (2009).ADSCrossRefGoogle Scholar
  11. [11]
    C. I. H. Ashby et al., Appl. Phys. Lett. 77, 3233 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    D. S. Wuu et al., IEEE Photonics Technol. Lett. 17, 288 (2005).ADSCrossRefGoogle Scholar
  13. [13]
    Y. P. Hsu et al., J. Cryst. Growth 261, 466 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    Y. T. Huang et al., IEEE Photonics Technol. Lett. 28, 605 (2016).ADSCrossRefGoogle Scholar
  15. [15]
    S. J. Chang et al., IEEE Photonics Technol. Lett. 20, 1866 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    E. V. Etzkorn and D. R. Clarke, J. Appl. Phys. 89, 1025 (2001).ADSCrossRefGoogle Scholar
  17. [17]
    S. N. Lee et al., Phys. Status Solidi C 10, 2458 (2004).ADSCrossRefGoogle Scholar
  18. [18]
    S. Harne et al., Appl. Phys. Lett. 68, 356 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    M. S. Ferdous, X. Wang, M. N. Fairchild and S. D. Hersee, Appl. Phys. Lett. 91, 231107 (2007).ADSCrossRefGoogle Scholar
  20. [20]
    J. K. Kim et al., IEEE Electron Device Lett. 34, 1409 (2013).ADSCrossRefGoogle Scholar
  21. [21]
    Y. M. Park et al., Appl. Phys. Lett. 95, 231917 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Dong et al., J. Appl. Phys. 109, 043103 (2011).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Hyun-Jin Lee
    • 1
  • Seung-Hye Baek
    • 1
  • Hyunseok Na
    • 2
  • Sung-Nam Lee
    • 1
    Email author
  1. 1.Department of Nano-Optical EngineeringKorea Polytechnic UniversitySiheungKorea
  2. 2.Department of Materials Science and EngineeringDaejin UniversityPocheonKorea

Personalised recommendations