Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 88–93 | Cite as

Comparative Study of Trans-linear and Trans-impedance Readout Circuits for Optical Beam Deflection Sensors in Atomic Force Microscopy

  • Bernard Ouma Alunda
  • Luke Oduor Otieno
  • Melody Chepkoech
  • Clare Chisu ByeonEmail author
  • Yong Joong Lee
Article
  • 18 Downloads

Abstract

The optical beam deflection sensor remains the most popular force detection method used in atomic force microscopy. With the recent development of short cantilevers, a means for measuring small deflections at high frequencies has become a challenge. Minimizing the noise level of the readout electronics without significantly limiting the detection bandwidth still remains a challenge. In this work, a recently proposed trans-linear readout circuit-based technique, in which necessary analog arithmetics are done in the current domain instead of the voltage domain, is compared to a more traditional trans-impedance readout circuit-based topology. Our developed trans-impedance readout circuit recorded a noise floor of 9.48 × 10−13 V2 Hz−1 compared to 1.41 × 10−11 V2 Hz−1 for the trans-linear readout circuit. Also, the measured −3 dB bandwidth of 11 MHz for the transimpedance readout circuit was slightly higher than the 10 MHz for the trans-linear readout circuit. Trans-impedance readout circuits, with proper circuit design considerations and careful selection of electronic parts, still remain competitive for use in high-speed operations in atomic force microscopy.

Keywords

Atomic force microscopy Cantilever Optical beam deflection Thermal noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Kodera, D. Yamamoto, R. Ishikawa and T. Ando, Nature 468, 72 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    M. Shibata, H. Watanabe, T. Uchihashi, T. Ando and R. Yasuda, Biophys. Physicobiol. 14, 127 (2017).CrossRefGoogle Scholar
  3. [3]
    I. Casuso, F. Rico and S. Scheuring, Curr. Opin. Chem. Biol. 15, 704 (2011).CrossRefGoogle Scholar
  4. [4]
    M. Shibata, H. Yamashita, T. Uchihashi, H. Kandori and T. Ando, Nat. Nanotech. 5, 208 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    T. Uchihashi, R. Iino, T. Ando and H. Noji, Science 333, 755 (2011).ADSCrossRefGoogle Scholar
  6. [6]
    T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi and T. Ando, Appl. Phys. Lett. 92, 243119 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    H. Watanabe, T. Uchihashi, T. Kobashi, M. Shibata, J. Nishiyama, R. Yasuda and T. Ando, Rev. Sci. Instrum. 84, 053702 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner and P. K. Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).CrossRefGoogle Scholar
  9. [9]
    A. Ahmad, A. Schuh and I. W. Rangelow, Rev. Sci. Instrum. 85, 103706 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    S. Necipoglu, S. A. Cebeci, Y. E. Has, L. Guvenc and C. Basdogan, IEEE Trans. Nanotechnol. 10, 1074 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    R. Enning, D. Ziegler, A. Nievergelt, R. Friedlos, K. Venkataramani and A. Stemmer, Rev. Sci. Instrum. 82, 043705 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    T. Fukuma, Rev. Sci. Instrum. 80, 023707 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    P. E. Rutten, Rev. Sci. Instrum. 82, 073705 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley and V. Elings, Rev. Sci. Instrum. 67, 3583 (1996).ADSCrossRefGoogle Scholar
  15. [15]
    G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    E. Meyer, Ph.D. Thesis, Basel University, Basel, Switzerland, 1990.Google Scholar
  17. [17]
    T. Itoh and T. Suga, Nanotechnology 4, 218 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    N. V. Andreeva, Ferroelectrics 525, 178 (2018).CrossRefGoogle Scholar
  19. [19]
    C. A. J. Putman, B. G. de Grooth, N. F. van Hulst and J. Greve, Ultramicroscopy 42, 1509 (1992).CrossRefGoogle Scholar
  20. [20]
    B. Routley and A. J. Fleming, 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (Paris, France, July 18–22, 2016), p. 1.Google Scholar
  21. [21]
    G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).ADSCrossRefGoogle Scholar
  22. [22]
    S. Hosaka, K. Etoh, A. Kikukawa and H. Koyanagi, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process Meas. Phenom. 18, 94 (2000).ADSCrossRefGoogle Scholar
  23. [23]
    T. Fukuma and S. P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006).ADSCrossRefGoogle Scholar
  24. [24]
    T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).ADSCrossRefGoogle Scholar
  25. [25]
    A. Labuda, K. Kobayashi, Y. Miyahara and P. Grütter, Rev. Sci. Instrum. 83, 053703 (2012).ADSCrossRefGoogle Scholar
  26. [26]
    B. Gilbert, Electron. Lett. 11, 14 (1975).CrossRefGoogle Scholar
  27. [27]
    M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, S. Mc Endoo, J. P. Cleveland and S. P. Jarvis, Rev. Sci. Instrum. 77, 013701 (2006).ADSCrossRefGoogle Scholar
  28. [28]
    N. Mullin and J. K. Hobbs, Rev. Sci. Instrum. 85, 113703 (2014).CrossRefGoogle Scholar
  29. [29]
    S. Torbrügge, J. Lübbe, L. Tröger, M. Cranney, T. Eguchi, Y. Hasegawa and M. Reichling, Rev Sci. Instrum. 79, 083701 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Bernard Ouma Alunda
    • 1
  • Luke Oduor Otieno
    • 1
  • Melody Chepkoech
    • 1
  • Clare Chisu Byeon
    • 1
    Email author
  • Yong Joong Lee
    • 1
  1. 1.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations