Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 695–700 | Cite as

Dipole Glass Phase in an Isolated Hydrogen-Bonded Mixed Crystal [(NH4)1−x Rbx]3H(SO4)2 (x = 0.58)

  • Kwang-Sei Lee
  • Jae-Hyeon KoEmail author
Article
  • 5 Downloads

Abstract

[(NH4)1−xRbx]3H(SO4)2 mixed crystals were investigated by dielectric constant measurement and Raman spectroscopy from room temperature to 7 K. In contrast to the result of (NH4)3H(SO4)2 (x = 0) showing multiple phase transitions, [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal does not show any remarkable dielectric anomaly but a weak dielectric dispersion below 40 K, which is characterized by the Arrhenius law. From the measurement of the Raman spectra of both crystals, it is confirmed that the [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal shows a global symmetry conservation between the two spectra measured at room temperature and at 20 K while the (NH4)3H(SO4)2 crystal exhibits drastic structural changes associated with the sequence of the phase transitions. It is concluded that [(NH4)1−xRbx]3H(SO4)2 (x = 0.58) mixed crystal shows a new dipole glass phase in the isolated hydrogen-bonded system.

Keywords

Dipole glass Hydrogen bond Dielectric Raman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Hallym University Research Fund, 2019.

References

  1. [1]
    G. Busch and P. Scherrer, Naturwiss. 23, 737 (1935).ADSCrossRefGoogle Scholar
  2. [2]
    G. Busch, Helv. Phys. Acta. 11, 269 (1938).Google Scholar
  3. [3]
    R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).Google Scholar
  4. [4]
    L. Novaković, The Pseudo-Spin Method in Magnetism and Ferroelectricity (Pergamon, New York, 1975).Google Scholar
  5. [5]
    See, for example, Ferroelectrics 71 and 72 (1987), Special Issue on KH2PO4 Type Ferro- and Antiferroelectrics.Google Scholar
  6. [6]
    S. Koval et al., ab initio Studies of H-Bonded Systems: The Cases of Ferroelectric KH 2 PO 4 and Antiferroelectric NH 4 H 2 PO 4 in Ferroelectrics — Characterization and Modeling, edited by M. Lallart (InTech, Rijeka, Croatia, 2011).Google Scholar
  7. [7]
    M. Ichikawa, K. Motida and N. Yamada, Phys. Rev. B 36, 874 (1987), and references therein.ADSCrossRefGoogle Scholar
  8. [8]
    Y. Moritomo, Y. Tokura, H. Takahashi and N. Mori, Phys. Rev. Lett. 67, 2041 (1991), and references therein.ADSCrossRefGoogle Scholar
  9. [9]
    Y. Uesu and J. Kobayashi, Phys. Status Solidi A 34, 475 (1976).ADSCrossRefGoogle Scholar
  10. [10]
    C. Totsuji and T. Matsubara, J. Korean Phys. Soc. 32, S50 (1998), and references therein.Google Scholar
  11. [11]
    M. Ichikawa, T. Gustafsson and I. Olovsson, Solid State Commun. 87, 349 (1993).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Moritomo et al., Phys. Rev. Lett. 71, 2833 (1993).ADSCrossRefGoogle Scholar
  13. [13]
    K. Gesi, Phys. Status Solidi A 33, 479 (1976).ADSCrossRefGoogle Scholar
  14. [14]
    K. Gesi, Jpn. J. Appl. Phys. 19, 1051 (1980).ADSCrossRefGoogle Scholar
  15. [15]
    T. Osaka, Y. Makita and K. Gesi, J. Phys. Soc. Jpn. 49, 593 (1980).ADSCrossRefGoogle Scholar
  16. [16]
    K. Gesi, J. Phys. Soc. Jpn. 42, 1785 (1977).ADSCrossRefGoogle Scholar
  17. [17]
    K. Gesi, J. Phys. Soc. Jpn. 48, 886 (1980).ADSCrossRefGoogle Scholar
  18. [18]
    M. Endo, T. Kaneko, T. Osaka and Y. Makita, J. Phys. Soc. Jpn. 52, 3829 (1983).ADSCrossRefGoogle Scholar
  19. [19]
    K. Gesi, J. Phys. Soc. Jpn. 61, 162 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    M. Komukae, T. Osaka, T. Kaneko and Y. Makita, J. Phys. Soc. Jpn. 54, 3401 (1985).ADSCrossRefGoogle Scholar
  21. [21]
    E. Courtens, T. F. Rosenbaum, S. E. Nalger and P. M. Horn, Phys. Rev. B 29, 515 (1984).ADSCrossRefGoogle Scholar
  22. [22]
    H. Terauchi, T. Futamura, Y. Nishihata and S. Iida, J. Phys. Soc. Jpn. 53, 483 (1984).ADSCrossRefGoogle Scholar
  23. [23]
    E. Courtens and H. Vogt, J. Chim. Phys. (Paris) 82, 317 (1985).CrossRefGoogle Scholar
  24. [24]
    E. Courtens, Ferroelectrics 72, 229 (1987), and references therein.CrossRefGoogle Scholar
  25. [25]
    K.-S. Lee, J. H. Koo and C. E. Lee, Solid State Commun. 240, 10 (2016).ADSCrossRefGoogle Scholar
  26. [26]
    A. I. Baranov et al., Ferroelectrics 217, 285 (1998).CrossRefGoogle Scholar
  27. [27]
    W. Bronowska, V. Videnova-Adrabinska and A. Pietraszko, Ferroelectrics 172, 411 (1995).CrossRefGoogle Scholar
  28. [28]
    W. Bronowska and A. Pietraszko, J. Mol. Struct. 374, 171 (1996).ADSGoogle Scholar
  29. [29]
    L. S. Smirnov et al., Phys. Solid State 43, 117 (2001).ADSCrossRefGoogle Scholar
  30. [30]
    L. S. Smirnov et al., Crystallogr. Rep. 53, 418 (2008).ADSCrossRefGoogle Scholar
  31. [31]
    M. Polomska et al., J. Mol. Struct. 887, 48 (2008).ADSCrossRefGoogle Scholar
  32. [32]
    H. Omi, K. Suzuki and S. Hayashi, Solid State Ionics 179, 842 (2008).CrossRefGoogle Scholar
  33. [33]
    See, Phys. Status Solidi B 251, 1957 (2014), for recent intensive research on the formation of multiple ferroic glasses (magnetic, polar and strain glass).Google Scholar
  34. [34]
    H. K. Shin, Solid State Commun. 128, 131 (2003).ADSCrossRefGoogle Scholar
  35. [35]
    K. Friese et al., J. Solid State Chem. 165, 136 (2002).ADSCrossRefGoogle Scholar
  36. [36]
    D. Swain and T. N. G. Row, Inorg. Chem. 46, 4411 (2007).CrossRefGoogle Scholar
  37. [37]
    Y. J. Sohn et al., Acta Cryst. B 65, 36 (2009).CrossRefGoogle Scholar
  38. [38]
    Y. J. Sohn, K. M. Sparta, M. Meven and G. Heger, Acta Cryst. B 67, 116 (2011).CrossRefGoogle Scholar
  39. [39]
    S. Suzuki and Y. Makita, Acta Cryst. B 34, 732 (1978).CrossRefGoogle Scholar
  40. [40]
    A. Leclaire et al., Acta Cryst. B 41, 209 (1985).CrossRefGoogle Scholar
  41. [41]
    P. M. Dominiak, J. Herold, W. Kolodziejski and K. Wozniak, Inorg. Chem. 42, 1590 (2003).CrossRefGoogle Scholar
  42. [42]
    G. J. McIntyre et al., Crystallogr. Rep. 58, 78 (2013).ADSCrossRefGoogle Scholar
  43. [43]
    Y. J. Sohn et al., Acta Cryst. B 69, 336 (2013).CrossRefGoogle Scholar
  44. [44]
    B. S. Fortier, M. E. Fraser and R. D. Heyding, Acta Cryst. C 41, 1139 (1985).CrossRefGoogle Scholar
  45. [45]
    H. Vogel, Z. Phys. 22, 645 (1921).Google Scholar
  46. [46]
    G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
  47. [47]
    S. L. Hutton et al., Phys. Rev. Lett. 66, 1990 (1991).ADSCrossRefGoogle Scholar
  48. [48]
    M. D. Ediger, C. A. Angell and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).CrossRefGoogle Scholar
  49. [49]
    P. Rajagopal and G. Aruldhas, J. Raman Spectrosc. 19, 497 (1988).ADSCrossRefGoogle Scholar
  50. [50]
    M. Damak et al., J. Mol. Struct. 130, 245 (1985).ADSCrossRefGoogle Scholar
  51. [51]
    M. Kasahara, P. Kaung and T. Yagi, J. Phys. Soc. Jpn. 61, 3432 (1992).ADSCrossRefGoogle Scholar
  52. [52]
    G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold Co., Princeton, 1966, 12th edition), pp. 99–101.Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano Science & Engineering, Center for Nano ManufacturingInje UniversityGimhaeKorea
  2. 2.School of Nano Convergence Technology, Nano Convergence Technology CenterHallym UniversityChuncheonKorea

Personalised recommendations