Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 660–673 | Cite as

Quantitative Investigation into the Relation between Force Chains and Stress Transmission During High-Velocity Compaction of Powder

  • Wei Zhang
  • Jian Zhou
  • Xue-Jie Zhang
  • Kun LiuEmail author


High-velocity compaction (HVC), an innovative approach to obtain green compacts with high and uniform density, is widely used in the powder metallurgy industry. In this study, meso force chains, macro stress transmission, and their relation were investigated using the discrete element method. The simulation details of HVC and the quantitative characterization of force chains and stress transmission were shown. Then, the relation between force chains and stress was investigated. The evolution of force chains showed the same change tendency as the stress distribution. They evolved from top to bottom and then reflected backwards in HVC while they did not show this trend in conventional compaction. The strength of the force chains maintained good consistency with the stress magnitude. Meanwhile, the length of the force chains presented a negative correlation with the stress magnitude, and high stress may cause new force chains to shorten. The average collimation coefficient was affected by the transmission of stress, and the short force chains had better straightness. Furthermore, force chains parallel to the direction of gravity were observed in the region with no stress concentration. The directional coefficient of force chains also had the same fluctuation trend as the variation in the principal stress angle.


High-velocity compaction Granular matter Stress Force chains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the National Natural Science Foundation of China for its financial support under Grant No. 51475135 and Grant No. 11472096.


  1. [1]
    J. Z. Wang, X. H. Qu, H. Q. Yin, M. J. Yi and X. J. Yuan, Powder Technol. 192, 131 (2009).CrossRefGoogle Scholar
  2. [2]
    D. F. Khan et al., Mater. Design 50, 479 (2013).CrossRefGoogle Scholar
  3. [3]
    H. Li et al., Mater. Design 57, 546 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    Z. Q. Yan, F. Chen and Y. X. Cai, Powder Technol. 208, 596 (2011).CrossRefGoogle Scholar
  5. [5]
    D. F. Khan et al., Mater. Design 54, 149 (2014).CrossRefGoogle Scholar
  6. [6]
    A. R. Khoei, S. O. R. Biabanaki and S. M. Parvaneh, Appl. Math. Model 37, 443 (2013).MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. C. Zhou et al., Powder Technol. 305, 183 (2017).CrossRefGoogle Scholar
  8. [8]
    P. Han et al., Powder Technol. 314, 69 (2017).ADSCrossRefGoogle Scholar
  9. [9]
    F. Huang, X. Z. An, Y. X. Zhang and A. B. Yu, Powder Technol. 314, 39 (2017).CrossRefGoogle Scholar
  10. [10]
    M. Shoaib, L. Kari and B. Azhdar, Powder Technol. 217, 394 (2012).CrossRefGoogle Scholar
  11. [11]
    S. Wang and Z. S. Zheng, Particuology 31, 49 (2017).CrossRefGoogle Scholar
  12. [12]
    M. J. Yi, H. Q. Yin, J. Z. Wang, X. J. Yuan and X. H. Qu, Front. Mater. Sci. China 3, 447 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    J. P. Bayle and F. Jorion, Proc. Chem. 7, 431 (2012).CrossRefGoogle Scholar
  14. [14]
    C. Giusti, L. Papadopoulos, E. T. Owens, K. E. Daniels and D. S. Bassett, Phys. Rev. E 94, 032909 (2016).ADSCrossRefGoogle Scholar
  15. [15]
    Y. M. Huang and K. E. Daniels, Granular Matter 18, 85 (2016).CrossRefGoogle Scholar
  16. [16]
    A. Tordesillas, E. H. James and T. T. Steven, Phys. Rev. E 89, 042207 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    A. Tordesillas, J. Y. Shi and T. Timothy, Anal. Met. 35, 264 (2011).Google Scholar
  18. [18]
    A. Tordesillas, Phil. Mag. 32, 4987 (2007).ADSCrossRefGoogle Scholar
  19. [19]
    O. Masanobu and I. Kazuyoshi, Int. J. Eng. Sci. 38, 1713 (2000).CrossRefGoogle Scholar
  20. [20]
    P. A. Cundall, Minnesota: Itasca Consulting Group Inc. (2004).Google Scholar
  21. [21]
    S. Wang, Z. S. Zhen and W. Zhou, Acta Phys. Sin. 60, 128101 (2011).Google Scholar
  22. [22]
    H. Kim, M. P. Wagoner and W. G. Buttlar, J. Mater. Civil. Eng. 20, 552 (2008).CrossRefGoogle Scholar
  23. [23]
    Y. He et al., J. Mater. Process. Tech 249, 291 (2017).CrossRefGoogle Scholar
  24. [24]
    C. L. Martin, D. Bouvard and S. Shima, J. Mech. Phys. Solids 51, 667 (2003).ADSCrossRefGoogle Scholar
  25. [25]
    A. H. Kharaz and D. A. Gorham, Phil. Mag. Lett. 80, 549 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    H. Teufelsbauer, Y. Wang, M-C. Chiou and W. Wu, Granular Matter 11, 209 (2009).CrossRefGoogle Scholar
  27. [27]
    J. F. Peters, M. Muthuswamy, J. Wibowo and A. Tordesillas, Phys. Rev. E 72, 041307 (2005).ADSCrossRefGoogle Scholar
  28. [28]
    Q. C. Sun, F. Jin and J. G. Liu, Int. J. Mod. Phys. B 24, 5743 (2010).ADSCrossRefGoogle Scholar
  29. [29]
    W. Zhang, J. Zhou, S. W. Yu, X. J. Zhang and K. Liu, Chin. J. Appl. Mech. 35, 155 (2018).Google Scholar
  30. [30]
    H. Z. Zhang et al., Powder Technol. 288, 435 (2016).CrossRefGoogle Scholar
  31. [31]
    N. Iikawa, M. M. Bandi and H. Katsuragi, J. Phys. Soc. Jpn. 84, 094401 (2014).ADSCrossRefGoogle Scholar
  32. [32]
    F. J. Meng, K. Liu and W. Wang, Tribol. Trans. 58, 70 (2015).CrossRefGoogle Scholar
  33. [33]
    R. C. Hurley, S. A. Hall, J. E. Andrade and J. Wright, Phys. Rev. Lett. 117, 098005 (2016).ADSCrossRefGoogle Scholar
  34. [34]
    H. J. Lai, J. J. Zheng, J. Zhang, R. J. Zhang and L. Cui, Comput. Geotech. 61, 13 (2014).CrossRefGoogle Scholar
  35. [35]
    C. Y. Wu et al., Powder Technol. 152, 107 (2005).CrossRefGoogle Scholar
  36. [36]
    N. Iikawa, M. M. Bandi and H. Katsuragi, Phys. Rev. E 94, 032909 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Institute of TribologyHefei University of TechnologyHefeiChina

Personalised recommendations