Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 637–641 | Cite as

A Concept of Cantilevers Optical Dimension for Optimal Application to Cantilever-Based Near-Field Scanning Optical Microscope and Its Measurement

  • Hyuntae Kim
  • Soo Bong ChoiEmail author
  • Moonkyu Jang
  • Doo Jae ParkEmail author
Article
  • 7 Downloads

Abstract

A guide to the selection of the apertured cantilever probe and the numerical aperture of objective lens used in a near-field scanning optical microscope (NSOM) is suggested by defining the Optical dimension of conventional cantilever probe, for achieving highest optical image contrast. An optimized combination between the geometry of the cantilever probe and numerical aperture of the objective lens should be decided for conventional optical head assembly of AFM-based NSOM consisting of cantilever probe and high numerical aperture objective lens, to ensure the light scattered from the specimen being screened by the umbra of cantilever probe, resulting in the light transmitted through the aperture being collected by the objective only. Here, introduction of the optical dimension of cantilever probe, which defines the power of screening the scattered light by the cantilever, conveniently gives us numerical values denoting probe geometry which is critically correlated with the numerical aperture of objective lens with optimized imaging properties. We provide a standard definition of the cantilevers optical dimension.

Keywords

Scanning probe microscopy Near-field scanning optical microscopy Cantilevers optical dimension Aperture cantilever Numerical aperture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Hallym Leading Research Group Support Program of 2017 (HRF-LGR-2017-0001).

References

  1. [1]
    C. C. Neacsu et al., Nano Lett. 10, 592 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    L. Wang and X. Xu, Appl. Phys. Lett. 90, 261105 (2007).ADSCrossRefGoogle Scholar
  3. [3]
    H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer and K. W. West, Science 264, 1740 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    C. L. Jahncke, M. A. Paesler and H. D. Hallen, Appl. Phys. Lett. 67, 2483 (1995).ADSCrossRefGoogle Scholar
  5. [5]
    R. M. Stockle, Y. D. Suh, V. Deckert and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).ADSCrossRefGoogle Scholar
  6. [6]
    J. Kerimo, D. M. Adams, P. F. Barbara, D. M. Kaschak and T. E. Mallouk, J. Phys. Chem. B 102, 9451 (1988).CrossRefGoogle Scholar
  7. [7]
    T. Mueller, F. Xia, M. Freitag, J. Tsang and Ph. Avouris, Phys. Rev. B. 79, 245430 (2009).ADSCrossRefGoogle Scholar
  8. [8]
    A. Valsesia et al., J. Phys. D: Appl. Phys. 40, 2341 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    S. Werner, O. Rudow, C. Mihalcea and E. Oesterschulze, Appl. Phys. A 66, 367 (1998).ADSCrossRefGoogle Scholar
  10. [10]
    E. Oesterschulze, O. Rudow, C. Mihalcea, W. Scholz and S. Werner, Ultramicroscopy 71, 85 (1998).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIncheon National UniversityIncheonKorea
  2. 2.School of Nano Convergence TechnologyHallym UniversityChuncheonKorea

Personalised recommendations