Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 53–56 | Cite as

Core-Shell-Structured Li[Ni0.87Co0.08Al0.05]O2 Cathode Material for Enhanced Electrochemical Performance and Thermal Stability of Lithium-Ion Batteries

  • Ji-Woong Shin
  • Jong-Tae SonEmail author
Article

Abstract

LiNi0.95Al0.05O2 cathode materials have attracted much interest as lithium storage materials for rechargeable lithium batteries because of their high capacity and low cost. However, they exhibit poor cycling performance and thermal instability. We synthesized Li[Ni0.87Co0.08Al0.05]O2 as a shell with high structural and thermal stability on the core surface to suppress surface degradation while maintaining high capacity. The capacity retention of the core-shell cathode after 30 cycles was 87%, which was better than that of the bare cathode (73%). Differential scanning calorimetry analysis revealed that the heat generation of the core-shell cathode was 331.4 J·g−1, which was lower than that of the bare cathode (487.5 J·g−1).

Keywords

Core-shell NCA Cycle performance Thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Y. Hwang, S. M. Oh, S. T. Myung, K. Y. Chung, I. Belharouak et al., Nat. Commun. 6, 6865 (2015).CrossRefGoogle Scholar
  2. [2]
    B. C. Jang and J. T. Son, J. Nanosci. Nanotechnol. 16, 10698 (2016).CrossRefGoogle Scholar
  3. [3]
    Y. G. Ptushinskii, Low Temp. Phys. 30, 1 (2004).ADSCrossRefGoogle Scholar
  4. [4]
    J. W. Shin and J. T. Son, J. New Mater. Electrochem. Syst. 21, 63 (2018).CrossRefGoogle Scholar
  5. [5]
    Y. Wen, B. Wang, G. Zeng, K. Nogita, D. Ye et al., Chem.- Asian J. 10, 661 (2015).CrossRefGoogle Scholar
  6. [6]
    S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa et al., Inorg. Chem. 51, 6211 (2012).CrossRefGoogle Scholar
  7. [7]
    Z. Jian, W. Han, X. Lu, H. Yang, Y. S. Hu et al., Adv. Energy Mater. 3, 156 (2013).CrossRefGoogle Scholar
  8. [8]
    J. Shim, J. Power Sources 112, 222 (2002).ADSCrossRefGoogle Scholar
  9. [9]
    R. B. Wright, J. Power Sources 112, 865 (2003).MathSciNetCrossRefGoogle Scholar
  10. [10]
    I. Belharouak, W. Lu, D. Vissers and K. Amine, Electrochem. Commun. 8, 329 (2006).CrossRefGoogle Scholar
  11. [11]
    G. W. Yoo, B. C. Jang and J. T. Son, Ceramic International 41, 1913 (2015).CrossRefGoogle Scholar
  12. [12]
    J. Xu, F. Lin, D. Nordlund, Ethan J. Crumlin et al., Chem. Commun. 52, 4239 (2016).CrossRefGoogle Scholar
  13. [13]
    K. J. Park, M. J. Choi, F. Maglia, S. J. Kim, K. H. Kim, C. S. Yoon and Y. K. Sun, Adv. Energy Mater. 8, 1703615 (2018).Google Scholar
  14. [14]
    Z. Lu and J. R. Dahn, J. Electrochem. Soc. 149, 1454 (2002).CrossRefGoogle Scholar
  15. [15]
    Z. Lu and J. R. Dahn, J. Electrochem. Soc. 149, 815 (2002).CrossRefGoogle Scholar
  16. [16]
    J. W. Shin and J. T. Son, J. New Mater. Electrochem. Syst. 21, 63 (2018).CrossRefGoogle Scholar
  17. [17]
    P. Hou, H. Zhang, Z. Zi, L. Zhang and X. Xu, J. Mater. Chem. 5, 4254 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano-Polymer Science & EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations