Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 48–52 | Cite as

Cube-shaped Triethylene Glycol-coated Ni−Mn Ferrite Nanoparticles for use as T2 Contrast Agents in Magnetic Resonance Imaging

  • Hyewon Chung
  • Hongsub Bae
  • Chan KimEmail author
  • Ilsu Rhee


Nickel-manganese (Ni−Mn) ferrite nanoparticles were synthesized using the hydrothermal technique and were coated with the biocompatible material of triethylene glycol (TEG) during the synthetic process. The chemical composition of the particles was Ni0.5Mn0.5Fe2O4 based on the use of inductively coupled plasma (ICP). The shapes of the particles were cubic in the TEM images and had an average side length of 68 nm. The XRD patterns confirmed the inverse spinel structure of these particles. The FTIR spectra also showed the firm coating of the TEG on the surfaces of these particles. The saturation magnetization of the particles was observed to be 66 emu/g with a coercive force of 150 Oe. The T1 and T2 relaxivities of the hydrogen protons in the aqueous dispersion of the particles were 0.32 and 15.59 mM−1s−1, respectively. The ratio of r2/r1 was 48.72, thus indicating that the Ni0.5Mn0.5Fe2O4 nanoparticles are applicable as high-efficacy T2 contrasts agents in MRI.


Nickel-Manganese ferrite nanoparticle Cube-shaped nanoparticles TEG coating MRI contrast agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Nutzenadel, A. Züttel, D. Chartouni, G. Schmid and L. Schlapbach, Eur. Phys. J. D 8, 245 (2000).ADSCrossRefGoogle Scholar
  2. [2]
    K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
  3. [3]
    A. K. Singh, Adv. Powder Tech. 21, 609 (2010).CrossRefGoogle Scholar
  4. [4]
    M. Horie, K. Fujita, H. Kato, S. Endoh, K. Fujita et al., Metallomics 4, 350 (2012).CrossRefGoogle Scholar
  5. [5]
    D. Guo, G. Xie and J. Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    I. Rhee, New Phys. Sae Mulli 65, 411 (2015).CrossRefGoogle Scholar
  7. [7]
    J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang et al., Nat. Med. 13, 95 (2007).CrossRefGoogle Scholar
  8. [8]
    R. Qiao, Q. Jia, S. Huwel, R. Xia, T. Liu et al., J. ACS Nano 6, 3304 (2012).CrossRefGoogle Scholar
  9. [9]
    I. Rhee and C. Kim, J. Magn. Magn. Mater. 261, 410 (2003).ADSCrossRefGoogle Scholar
  10. [10]
    T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong et al., J. Magn. Magn. Mater. 381, 151 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    L. Yang, L. Ma, J. Xin, A. Li and C. Sun, Chem. Mater. 29, 3038 (2017).CrossRefGoogle Scholar
  12. [12]
    T. Ahmad, I. Rhee, S. Hong, Y. Chang and J. Lee, J. Nanosci. Nanotechnol. 11, 5645 (2011).CrossRefGoogle Scholar
  13. [13]
    A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018).ADSCrossRefGoogle Scholar
  14. [14]
    G. Mathubala, A. Manikandan, S. A. Antony and P. Ramar, J. Mol. Struct. 1113, 79 (2016).ADSCrossRefGoogle Scholar
  15. [15]
    M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014).CrossRefGoogle Scholar
  16. [16]
    A. Narayanasamy and N. Sivakumar, Bull. Mater. Sci. 31, 373 (2005).CrossRefGoogle Scholar
  17. [17]
    J. Azadmanjiri, Mater. Chem. Phys. 109, 109 (2008).CrossRefGoogle Scholar
  18. [18]
    M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi and W. Ueda, Chem. Mater. 19, 5779 (2007).CrossRefGoogle Scholar
  19. [19]
    H. E. Zhang, B. F. Zhang, G. F. Wang and X. H. Dong, J. Magn. Magn. Mater. 312, 126 (2007).ADSCrossRefGoogle Scholar
  20. [20]
    T. G. Altincekic, I. Boz, A. Baykal, S. Kazan, R. Topkaya et al., J. Alloys Compd. 493, 493 (2010).CrossRefGoogle Scholar
  21. [21]
    A. Ahmad, H. Bae and I. Rhee, AIP Adv. 8, 055019 (2018).ADSCrossRefGoogle Scholar
  22. [22]
    C. Felton, A. Karmakar, Y. Gartia, P. Ramidi, A. S. Biris et al., Drug Metab Rev. 46, 142 (2014).CrossRefGoogle Scholar
  23. [23]
    Z. R. Stephen, F. M. Kievit and M. Zhang, Mater. Today (Kidlington). 14, 330 (2011).CrossRefGoogle Scholar
  24. [24]
    A. Senpan, S. D. Caruthers, I. Rhee, N. A. Mauro, D. Pan et al., ACS Nano 3, 3917 (2009).CrossRefGoogle Scholar
  25. [25]
    Z. Shen, A. Wu and X. Chen, Mol. Pharmaceutics 14, 1352 (2017).CrossRefGoogle Scholar
  26. [26]
    T. Ahmad, H. Bae, I. Rhee, Y. Chang, J. Lee et al., Curr. Appl. Phys. 12, 969 (2012).ADSCrossRefGoogle Scholar
  27. [27]
    Y. Okuhata, Adv. Drug Delivery Rev. 37, 121 (1999).CrossRefGoogle Scholar
  28. [28]
    A. Tanveer, Y. Iqbal, H. Bae, I. Rhee et al., J. Korean Phys. Soc. 62, 1696 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Hyewon Chung
    • 1
  • Hongsub Bae
    • 1
  • Chan Kim
    • 1
    Email author
  • Ilsu Rhee
    • 1
  1. 1.Department of PhysicsKyungpook National UniversityDaeguKorea

Personalised recommendations