Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 201–204 | Cite as

Structural and Electrochemical Properties of Ba-doped Li[Ni0.5Mn1.5]O4 Electrode Synthesized by Co-precipitation for 5.0V Lithium-Ion Batteries

  • Kyoung-Tae Kim
  • Jong-Tae SonEmail author
Article
  • 8 Downloads

Abstract

Li[Ni0.5Mn1.5]O4 is considered as one of the most attractive cathode materials for high-power battery applications owing to its high operating voltage of around 5.0 V vs. Li/Li+, excellent reversible capacity, and superior specific energy. However, Li[Ni0.5Mn1.5]O4 exhibits a non-negligible capacity fading during cycling due to the structural and the chemical instabilities resulting from electrolyte decomposition. Ba doping significantly reduced the degree of Ni/Mn disordering, decreased the charge-transfer resistance, and accelerated lithium diffusion owing to the strong binding energy of Ba2+−O (563 eV). We investigated the effect of Ba doping on the crystalline structure and the electrochemical performance of the Li[Ni0.5Mn1.5]O4 cathode material. The Ba-doped cathode exhibited a good charge storage capacity of 119 mAhg−1, with a capacity retention of over 94% after 35 voltage cycles (between 3.0 and 5.0 V) at 0.1 C.

Keywords

5.0V lithium-ion battery Ba-doped Cathode materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. H. Park, S. H. Kang and K. Amine, Electrochimca. Acta 52, 7226 (2007).CrossRefGoogle Scholar
  2. [2]
    Y. Fan, J. Wang and Z. Tang, Electrochimca. Acta 52, 3870 (2007).CrossRefGoogle Scholar
  3. [3]
    S. W. Oh, S. T. Myung and H. B. Kang, J. Power Sources 189, 752 (2009).ADSCrossRefGoogle Scholar
  4. [4]
    L. H. Chi, N. N. Dinh and S. Brutti Electrochimca. Acta 55, 5110 (2010).CrossRefGoogle Scholar
  5. [5]
    J. H. Kim, S. T. Myung and Y. K. Sun, Electrochimca. Acta 49, 219 (2004).CrossRefGoogle Scholar
  6. [6]
    O. Zhang, J. Mei and X. Wang, Electrochimca. Acta 143, 265 (2014).ADSCrossRefGoogle Scholar
  7. [7]
    S. B. Park, W. S. Eom and W. I. Cho, J. Power Sources 159, 679 (2006).ADSCrossRefGoogle Scholar
  8. [8]
    T. F. Yi, Y. R. Zhu and R. S. Zhu, Solid State Ionics 179, 2132 (2008).CrossRefGoogle Scholar
  9. [9]
    M. Mo, K. S. Hui and X. Hong, Appld. Surf. Sci. 290, 412 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    B. C. Jang, G. W. Yoo and S. G. Min, J. Korean Electrochem. Soci. 17, 1 (2014).CrossRefGoogle Scholar
  11. [11]
    J. F. Wang, D. Chen and W. Wu, Trans. Nonferrous Met. Soc. China 27, 2239 (2017).CrossRefGoogle Scholar
  12. [12]
    C. Kim, G. W. Yoo and J. T. Son, J Nanosci. and Nanotech. 15, 8808 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano-Polymer Science & EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations