Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 19–23 | Cite as

Scale Breaking in Quark and Gluon Jets in Electron Positron Annihilations, using AMY Data

  • M. KouhestaniEmail author
  • S. Mohammadi
  • M. E. Zomorrodian
  • R. Saleh-Moghaddam
Article
  • 6 Downloads

Abstract

We have studied hadronic events for e+e annihilation by using real AMY data as well as Monte Carlo simulated events. We present mean cone angle and transverse momentum for quark and gluon jets. We observe that the cone angle for gluon jet sample is wider than that for quark jet. Transverse momentum with respect to the jet axis is also higher for gluon jet. Next we study scaling violation for two kinds of jets. Due to the higher color factor for gluon jet, it shows a stronger scaling violation compared to quark jet. A good agreement is found between measurements and corresponding QCD predictions. We will explain all these features in this paper.

Keywords

interaction Quantum chromo-dynamics Quark Gluon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Kluth, Rep. Prog. Phys 69, 1771 (2006).ADSCrossRefGoogle Scholar
  2. [2]
    V. Bertone et al., [NNPDF Collaboration], Eur. Phys. J. C 77, 516 (2017)ADSCrossRefGoogle Scholar
  3. 2a.
    D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D 75, 114010 (2007).ADSCrossRefGoogle Scholar
  4. [3]
    M. Soleymaninia, A. N. Khorramian, S. M. Moosavi Nejad and F. Arbabifar, Phys. Rev. D 88, 054019 (2013).ADSCrossRefGoogle Scholar
  5. [4]
    O. Biebel, phys. Rep 340, 165 (2001).ADSCrossRefGoogle Scholar
  6. [5]
    T. Sjostrand et al., arXiv: hep-ph/1410.3012v1 (2014).Google Scholar
  7. [6]
    Y. K. Li et al., Phys. Rev. D 4, 12675 (1990).Google Scholar
  8. [7]
    T. Kumita et al., Phys. Rev. D 42, 1339 (1990).ADSCrossRefGoogle Scholar
  9. [8]
    A. Bacala et al., phys. Lett B 218, 112 (1989)ADSCrossRefGoogle Scholar
  10. 8a.
    Y. K. Kim et al., Phys. Rev. Lett 63, 1772 (1989).ADSCrossRefGoogle Scholar
  11. [9]
    R. Saleh-Moghaddam and M. E. Zomorrodian, Indian Journal of Physics 87, 687 (2013).ADSCrossRefGoogle Scholar
  12. [10]
    M. Spousta, Indian J. Phys 85, 1063 (2011).ADSCrossRefGoogle Scholar
  13. [11]
    J. Schieck, Nuclear Physics B 234, 225 (2013).CrossRefGoogle Scholar
  14. [12]
    M. Tasevsky, arXive: hep-ex/0110084v1 (2001).Google Scholar
  15. [13]
    OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 7, 369 (1999).ADSCrossRefGoogle Scholar
  16. [14]
    OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 27, 467 (2003).ADSCrossRefGoogle Scholar
  17. [15]
    OPAL Collaboration, G. Abbiendi et al., Eur Phys J C 16, 185 (2000).ADSCrossRefGoogle Scholar
  18. [16]
    ALEPH Collaboration, A. Heiser et al., Eur. Phys. J. C 35, 457 (2004).ADSCrossRefGoogle Scholar
  19. [17]
    TPC Collaboration, H. Aihara et al., Phys. Rev. Lett 61, 1263 (1988).CrossRefGoogle Scholar
  20. [18]
    OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 1, 479 (1998).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • M. Kouhestani
    • 1
    Email author
  • S. Mohammadi
    • 1
  • M. E. Zomorrodian
    • 2
  • R. Saleh-Moghaddam
    • 2
  1. 1.Physics DepartmentPayame noor UniversityTehranIran
  2. 2.Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations