Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 182–186 | Cite as

Fabrication of ZnO Nanosheets by Chemical Annealing of Pre-Synthesized Zn Sheets

  • Jong-Hwan YoonEmail author


In this work, zinc oxide (ZnO) nanosheets were fabricated by chemically annealing pre-synthesized Zn sheets by exposing them to an oxygen plasma at low temperatures. The resulting ZnO nanosheets were found to have a wurtzite hexagonal structure similar to that of the pre-synthesized Zn sheets. Moreover, they exhibited growth characteristics along the [101] preferred direction, a Raman peak located around 590 cm−1, and photoluminescence spectra with peaks at approximately 380 nm and 500 nm. The results show that ZnO nanosheets can be obtained by oxidizing Zn sheets via a self-catalyzed vapor-solid mechanism.


Zinc oxide nanosheets Zinc sheets Oxygen plasma Vapor-solid mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Yamamoto, T. Yamada, A. Miyake, H. Makino and N. Yamamoto, J. Soc. Inf. Display 16, 713 (2008).CrossRefGoogle Scholar
  2. [2]
    W. Chen, H. F. Zhang, I. M. Hsing and S. H. Yang, Electrochem. Commun. 11, 1057 (2009).CrossRefGoogle Scholar
  3. [3]
    J. A. Anta, E. Guillén and R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012).CrossRefGoogle Scholar
  4. [4]
    F. H. Alshammari, P. K. Nayak, Z. Wang and H. N. Alshareef, Appl. Mater. Interfaces 8, 22751 (2016).CrossRefGoogle Scholar
  5. [5]
    S. J. Pearton and F. Ren, Curr. Opin. Chem. Eng. 3, 51 (2014).CrossRefGoogle Scholar
  6. [6]
    Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).ADSGoogle Scholar
  7. [7]
    J. Cui, Q. Zeng and U. J. Gibson, J. Appl. Phys. 99, 08M113 (2006).CrossRefGoogle Scholar
  8. [8]
    S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).CrossRefGoogle Scholar
  9. [9]
    J. L. G. Fierro (Ed.), Metal Oxides: Chemistry & Applications (CRC Press, London, 2006), p. 182.Google Scholar
  10. [10]
    W. Bai, X. Zhu, Z. Zhu and J. Chu, Appl. Surf. Sci. 254, 6483 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Li, G. W. Meng and L. D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).ADSCrossRefGoogle Scholar
  14. [14]
    R. Zhang, P-G. Yin, N. Wang and L. Guo, Solid State Sci. 11, 865 (2009).ADSCrossRefGoogle Scholar
  15. [15]
    J. B. Wang, H. M. Zhong, Z. F. Li and W. Luo, Appl. Phys. Lett. 88, 101913 (2006).ADSCrossRefGoogle Scholar
  16. [16]
    M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13, 113 (2001).CrossRefGoogle Scholar
  17. [17]
    J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li and T. Sekiguchi, Appl. Phys. Lett. 83, 4144 (2003).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsKangwon National UniversityChuncheonKorea

Personalised recommendations