Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 177–181 | Cite as

Properties of ZnO:Tb Thin Films Deposited on Quartz Substrates by Using Magnetron Sputtering

  • Johngeon Shin
  • Shinho ChoEmail author
Article
  • 3 Downloads

Abstract

Tb-doped ZnO thin films on quartz substrates were prepared at various deposition temperatures by using radio-frequency magnetron sputtering. The crystallographic characteristics were examined by using X-ray diffraction and showed a strong diffraction peak from the (002) planes of the ZnO. As the deposition temperature increased from 100° C and 200° C to above 300° C, the grain boundaries disappeared by merging together. The optical transmittance was over 80% in the wavelength region between 450 nm and 1100 nm regardless of the deposition temperature. The electrical properties were evaluated by using Hall effect measurements. As the deposition temperature was increased, the electron concentrations increased, but the mobility tended to decrease. These results show that the properties of ZnO:Tb thin films are influenced by the deposition temperature and that optimum electrical and optical properties can be obtained by controlling the deposition temperature.

Keywords

II-VI semiconductor Sputtering Thin film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Szyszka, Thin Solid Films 351, 164 (1999).ADSCrossRefGoogle Scholar
  2. [2]
    P. Nunes, D. Costa, E. Fortunato and R. Martins, Vacuum 64, 293 (2002).CrossRefGoogle Scholar
  3. [3]
    S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang and J. S. Kang, Thin Solid Films 473, 31 (2005).ADSCrossRefGoogle Scholar
  4. [4]
    S. Takada, J. Appl. Phys. 73, 4739 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    J. S. Shiau, S. Brahma, C. Liu and J. Huang, Thin Solid Films 620, 170 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    A. G. Kumar, T. S. Sarmash, L. Obulapathi, D. J. Rani, T. S. Subba and K. Asokan, Thin Solid Films 605, 102 (2016).ADSCrossRefGoogle Scholar
  7. [7]
    S. Kuo, W. Chen, F. Lai, C. Cheng, H. Kuo, S. Wang and W. Hsieh, J. Cryst. Growth 287, 78 (2006).ADSCrossRefGoogle Scholar
  8. [8]
    M. Jun, S. Park and J. Koh, Nanoscale Res. Lett. 7, 639 (2012).ADSCrossRefGoogle Scholar
  9. [9]
    A. Ishizumi, Y. Taguchi, A. Yamamoto and Y. Kanemitsu, Thin Solid Films 486, 50 (2005).ADSCrossRefGoogle Scholar
  10. [10]
    C. Jayachandraiah, K. Kumar, G. Krishnaiah and N. Rao, J. Alloys. Compd. 623, 248 (2015).CrossRefGoogle Scholar
  11. [11]
    Z. Pan, S. Morgan, A. Ueda, R. Aga Jr., A. Steigerwald, A. Hmelo and R. Mu1, J. Phys.: Condens. Matter. 19, 266216 (2007).ADSGoogle Scholar
  12. [12]
    A. Hastir, N. Kohli and R. Singh, Sensor. Actuat. B 231, 110 (2016).CrossRefGoogle Scholar
  13. [13]
    W. Lan, Y. Liu, M. Zhang, B. Wang, H. Yan and Y. Wang, Mater. Lett. 61, 2262 (2007).CrossRefGoogle Scholar
  14. [14]
    A. Hastir, N. Kohli and R. Singh, J. Phys. Chem. Solids 105, 23 (2017).Google Scholar
  15. [15]
    Z. Fang, Y. Tan, H. Gong, C. Zhen, Z. He and Y. Wang, Mater. Lett. 59, 2611 (2005).CrossRefGoogle Scholar
  16. [16]
    S. Cho, Phys. Status Solidi A 211, 709 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    A. Ziani, C. Davesnne, C. Labbé, J. Cardin, P. Marie, X. Portier, C. Frilay and S. Boudin, Thin Solid Films 553, 52 (2014).ADSCrossRefGoogle Scholar
  18. [18]
    E. Mirica, G. Kowach, P. Evans and H. Du, Cryst. Growth Des. 4, 147 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringSilla UniversityBusanKorea

Personalised recommendations