Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 154–158 | Cite as

Electrical Observation of the Effective Mass in a Single-Crystal WTe2 Layer

  • Jeehoon Jeon
  • Tae-Eon Park
  • Chaun Jang
  • Taeyueb Kim
  • Jinki Hong
  • Hyun Cheol KooEmail author


In order to investigate the effective mass of a single-crystalline WTe2 layer, we measured the temperature dependence of the Shubnikov-de Haas oscillation. In this method, the magnetoresistance with a perpendicular magnetic field is monitored by changing the temperature from 1.9 K to 6 K. The extracted effective mass of WTe2 for magnetic fields ranging from 6.8 T to 8.7 T is m* = 0.327m0 which is almost constant in this range. The theoretical expectation values of m*/m0 for the valence and the conduction bands are 0.58 and 0.26, respectively; the experimental value of the effective mass is between these two values. Thus, our results clearly show that single-crystalline WTe2 has both electron- and hole-like pockets that simultaneously contribute to electrical transport in the channel.


Effective mass WTe2 Shubnikov-de Haas oscillation Magnetoresistance Transition-metal dichalcogenides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Yan, E. Sagasta, M. Ribeiro, Y. Niimi, L. E. Hueso and F. Casanova, Nat. Commun. 8, 661 (2017).ADSCrossRefGoogle Scholar
  2. [2]
    S. Liang, H. Yang, P. Renucci, B. Tao, P. Laczkowski, S. McMurtry, G. Wang, X. Marie, J-M. George, S. Petit-Watelot, A. Djeffal, S. Mangin, H. Jaffrès and Y. Lu, Nat. Commun. 8, 14947 (2017)ADSCrossRefGoogle Scholar
  3. [3]
    A. Avsar, J. Y. Tan, M. Kurpas, M. Gmitra, K. Watanabe, T. Taniguchi, J. Fabian and B. Özyilmaz, Nat. phys. 13, 888 (2017).CrossRefGoogle Scholar
  4. [4]
    H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B-J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa and Y. Iwasa, Nat. Phys. 9, 563 (2013).CrossRefGoogle Scholar
  5. [5]
    K. Premasiri, S. K. Radha, S. Sucharitakul, U. R. Kumar, R. Sankar, F-C. Chou, Y-T. Chen and X. P. A. Gao, Nano Lett. 18, 4403 (2018).ADSCrossRefGoogle Scholar
  6. [6]
    Z. Hou, C. Gong, Y. Wang, Q. Zhang, B. Yang, H. Zhang, E. Liu, Z. Liu, Z. Zeng, G. Wu, W. Wang and X. Zhang, J. Phys.: Condens. Matter 30, 085703 (2018).ADSGoogle Scholar
  7. [7]
    Z. Zhu, X. Lin, J. Liu, B. Fauqué, Q. Tao, C. Yang, Y. Shi and K. Behnia, Phys. Rev. Lett. 114, 176601 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong and R. J. Cava, Nature 514, 205 (2014).ADSCrossRefGoogle Scholar
  9. [9]
  10. [10]
  11. [11]
    H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han and M. Johnson, Science 325, 1515 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    W. Y. Choi, H. Kim, J. Chang, S. H. Han, H. C. Koo and M. Johnson, Nat. Nanotech. 10, 666 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang, Q. Li, Y. Wang, X-Z. Li, D. Mandrus, X. C. Xie, M. Pan and J. Wang, Phys. Rev. B 92, 041104 (2015).ADSCrossRefGoogle Scholar
  14. [14]
    L. R. Thoutam, Y. L. Wang, Z. L. Xiao, S. Das, A. Luican-Mayer, R. Divan, G. W. Crabtree and W. K. Kwok, Phys. Rev. Lett. 115, 046602 (2015).ADSCrossRefGoogle Scholar
  15. [15]
    L. Wang, I. Gutiérrez-Lezama, C. Barreteau, N. Ubrig, E. Giannini and A. F. Morpurgo, Nat. Commun. 6, 8892 (2015).CrossRefGoogle Scholar
  16. [16]
    Sudesh, P. Kumar, P. Neha, T. Das and S. Patnaik, Sci. Rep. 7, 46062 (2017).ADSCrossRefGoogle Scholar
  17. [17]
    J. Tian, C. Chang, H. Cao, K. He, X. Ma, Q. Xue and Y. P. Chen, Sci. Rep. 4, 4859 (2014).ADSCrossRefGoogle Scholar
  18. [18]
    F-X. Xiang, M. Veldhorst, S-X. Dou and X-L. Wang, EPL 112, 37009 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    Y. H. Park, H. C. Koo, K. H. Kim, H. Kim, J. Chang and S. H. Han, J. Korean Phys. Soc. 57, 1929 (2010).ADSCrossRefGoogle Scholar
  20. [20]
    N. Tang, B. Shen, M. J. Wang, Z. J. Yang, K. Xu, G. Y. Zhang, Y. S. Gui, B. Zhu, S. L. Guo, J. H. Chu, K. Hoshino and Y. Arakawa, Phys. Status Solidi C 3, 2246 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    D. R. Hang, C-T. Liang, C. F. Huang, Y. H. Chang, Y. F. Chen, H. X. Jiang and J. Y. Lin, Appl. Phys. Lett. 79, 66 (2001).ADSCrossRefGoogle Scholar
  22. [22]
    J. Darío Perea, J. R. Mejía-Salazar and N. Porras-Montenegro, J. Phys.: Condens. Matter 23, 065303 (2011).ADSGoogle Scholar
  23. [23]
    A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond and V. Fal’ko, 2D Mater. 2, 022001 (2015).CrossRefGoogle Scholar
  24. [24]
    J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).ADSCrossRefGoogle Scholar
  25. [25]
    P. K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B. E. Feldman, J. Tao, R. Ciancio, G. Rossi, M. N. Ali, S. Picozzi, A. Yadzani, G. Panaccione and R. J. Cava, Nat. Commun. 7, 10847 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Jeehoon Jeon
    • 1
    • 2
  • Tae-Eon Park
    • 3
  • Chaun Jang
    • 3
  • Taeyueb Kim
    • 4
  • Jinki Hong
    • 2
  • Hyun Cheol Koo
    • 1
    • 5
    Email author
  1. 1.Center for SpintronicsKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Applied PhysicsKorea UniversitySejongKorea
  3. 3.Center for Spintronics, Korea Institute of Science and TechnologyKorea Institute of Science and TechnologySeoulKorea
  4. 4.Center of Electricity and MagnetismKorea Research Institute of Standards and ScienceDaejeonKorea
  5. 5.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea

Personalised recommendations