Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 140–144 | Cite as

Optical Characterization of Luminescent Silicon Nanowires

  • Daeyoon Jung
  • Honglae SohnEmail author
  • Yongmin Kim
Article
  • 10 Downloads

Abstract

Visible photoluminescence (PL) at room temperature from silicon nanowires (Si NWs) prepared by using the metal-assisted chemical-etching (MACE) technique is reported. The morphology and the luminescence properties of Si NWs are characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), and luminescence spectroscopy. TEM images of the luminescent Si NWs reveal that the surfaces of the Si NWs are very rough, with a few nano-sized silicon particles being attached to the Si NWs. Luminescent Si NWs are optically characterized by PL and Raman measurements. Temperature-dependent PL measurements are measured at temperatures from 5 K to room temperature to determine the origin of the PL. The PL intensity decreases and the wavelength of the PL is blue-shifted as the temperature is increased. The Raman spectra of luminescent Si NWs reveal quantum confinement of the Si NWs.

Keywords

Silicon nanowire Raman spectroscopy Temperature-dependent photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Ma, C. Lee, F. Au, S. Tong and S. Lee, Science 299, 1874 (2003).ADSCrossRefGoogle Scholar
  2. [2]
    Y. Cui and C. M. Lieber, Science 291, 851 (2001).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K-H. Kim and C. M. Lieber, Science 294, 1313 (2001).ADSCrossRefGoogle Scholar
  4. [4]
    A. Cullis and L. T. Canham, Nature 353, 335 (1991).ADSCrossRefGoogle Scholar
  5. [5]
    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).ADSCrossRefGoogle Scholar
  6. [6]
    J. Valenta, B. Bruhn and J. Linnros, Nano Lett. 11, 3003 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    X. Lu, C. M. Hessel, Y. Yu, T. D. Bogart and B. A. Korgel, Nano Lett. 13, 3101 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins and M. L. Brongersma, Nano Lett. 6, 2140 (2006).ADSCrossRefGoogle Scholar
  9. [9]
    J. Wilcoxon and G. Samara, Appl. Phys. Lett. 74, 3164 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature 451, 163 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007).ADSCrossRefGoogle Scholar
  13. [13]
    E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).CrossRefGoogle Scholar
  14. [14]
    M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis and H. A. Atwater, Nano Lett. 8, 710 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    K. Bhowmik and A. Mondal, Electron. Mater. Lett. 11, 180 (2015).ADSCrossRefGoogle Scholar
  16. [16]
    C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    G. Zheng, F. Patolsky, Y. Cui, W. U. Wang and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005).CrossRefGoogle Scholar
  18. [18]
    S. M. Koo, Q. Li, M. D. Edelstein, C. A. Richter and E. M. Vogel, Nano Lett. 5, 2519 (2005).ADSCrossRefGoogle Scholar
  19. [19]
    Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Lett. 3, 149 (2003).ADSCrossRefGoogle Scholar
  20. [20]
    X. F. Duan, Y. Huang and C. M. Lieber, Nano Lett. 2, 487 (2002).ADSCrossRefGoogle Scholar
  21. [21]
    R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).ADSCrossRefGoogle Scholar
  22. [22]
    H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi and S. Q. Feng, Chem. Phys. Lett. 323, 224 (2000).ADSCrossRefGoogle Scholar
  23. [23]
    D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, Physica E 9, 305 (2001).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Wang, V. Schmidt, S. Senz and U. Gosele, Nat. Nanotechnol. 1, 186 (2006).ADSCrossRefGoogle Scholar
  25. [25]
    B. Fuhrmann, H. S. Leipner, H-R. Höche, L. Schubert, P. Werner and U. Gösele, Nano Lett. 5, 2524 (2005).ADSCrossRefGoogle Scholar
  26. [26]
    T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh, K. Komori and M. Fujii, Nano Lett. 8, 362 (2008).ADSCrossRefGoogle Scholar
  27. [27]
    K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Adv. Mater. 14, 1164 (2002).CrossRefGoogle Scholar
  28. [28]
    K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee and J. Zhu, Adv. Funct. Mater. 16, 387 (2006).CrossRefGoogle Scholar
  29. [29]
    K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee and J. Zhu, Small 1, 1062 (2005).CrossRefGoogle Scholar
  30. [30]
    Z. Huang, N. Geyer, P. Werner, J. D. Boor and U. Gösele, Adv. Mater. 23, 285 (2011).CrossRefGoogle Scholar
  31. [31]
    F. Voigt, V. Sivakov, V. Gerliz, G. H. Bauer, B. Hoffmann, G. Z. Radnoczi, B. Pecz and S. Christiansen, Phys. Status Solidi A 208, 893 (2011).ADSCrossRefGoogle Scholar
  32. [32]
    D. Jung, S. G. Cho, T. Moon and H. Sohn, Electron. Mater. Lett. 12, 17 (2016).ADSCrossRefGoogle Scholar
  33. [33]
    J. Grawboska, M. Meaney, K. K. Nanda, J-P. Mosnier, M. O. Henry, J-R. Duclere and E. McGlynn, Phys. Rev. B 71, 115439 (2005).ADSCrossRefGoogle Scholar
  34. [34]
    K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen and P. C. Eklund, Appl. Phys. A-Mater. Sci. Process. 85, 287 (2006).ADSCrossRefGoogle Scholar
  35. [35]
    Z. Iqbal and S. Veperk, J. Phys. C 15, 377 (1982).ADSCrossRefGoogle Scholar
  36. [36]
    Z. F. Sui, P. P. Leong, I. P. Herman, G. S. Higashi and H. Temkin, Appl. Phys. Lett. 60, 2086 (1992).ADSCrossRefGoogle Scholar
  37. [37]
    D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryChosun UniversityGwangjuKorea
  2. 2.Department of Applied Physics and Institute of Nanosensors and BiotechnologyDankook UniversityYonginKorea

Personalised recommendations