Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 116–121 | Cite as

Photoelectrochemical Characterization of p-type InAlP on GaAs for Solar Water Splitting Application

  • Mostafa Afifi Hassan
  • Jin-Ho Kang
  • Santosh S. Patil
  • Muhammad Ali Johar
  • Sang-Wan RyuEmail author
  • Suk-In Park
  • Jindong Song
Article
  • 12 Downloads

Abstract

The photoelectrochemical characteristics of p-InAlP grown on GaAs were investigated to exploit the potential of that material future as a photocathode in solar water splitting. The flat band potential was measured, and electrochemical impedance spectroscopy was performed to propose an equivalent circuit model and circuit elements fitted for charge transport analysis. Low photocatalytic activity was attributed to the band alignment with the water redox level. Since the valence band of InAlP is close to the water oxidation level, it causes inefficient hole transport to the counter electrode and the accumulation of holes in the photocathode.

Keywords

InAlP Photocathode Photoelectrochemical Water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Fujishima and K. Honda, Nature 238, 37 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    M. Grätzel, Nature 414, 338 (2001).ADSCrossRefGoogle Scholar
  3. [3]
    V. J. Babu, S. Vempati, T. Uyar and S. Ramakrishna, Phys. Chem. Chem. Phys. 17, 2960 (2015).CrossRefGoogle Scholar
  4. [4]
    U. Shaislamov and H. J. Lee, J. Korean Phys. Soc. 69, 1242 (2016).ADSCrossRefGoogle Scholar
  5. [5]
    M. G. Mali, H. Yoon, B. N. Joshi, H. Park, S. S. Al-Deyab, D. C. Lim, S. Ahn, C. Nervi and S. S. Yoon, ACS Appl. Mater. Interfaces 7, 21619 (2015).CrossRefGoogle Scholar
  6. [6]
    Z. Zemin, C. Gao, Z. Wu, W. Han, Y. Wang, W. Fu, X. Li and E. Xie, Nano Energy 19, 318 (2016).ADSCrossRefGoogle Scholar
  7. [7]
    S. Park, H. J. Kim, C. W. Lee, H. J. Song, S. S. Shin, S. W. Seo, H. K. Park, S. Lee, D-W. Kim and K. S. Hong, Int. J. Hydrogen Energy. 39, 16459 (2014).CrossRefGoogle Scholar
  8. [8]
    E. S Babu, S. K. Hong, M. Jeong, J. Y. Lee, J. H. Song and H. K. Cho, J. Korean Phys. Soc. 66, 832 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray and N. S. Lewis, Energy Environ. Sci. 5, 9653 (2012).CrossRefGoogle Scholar
  10. [10]
    S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok and H. J. Fan, Adv. Mater. 24, 4157 (2012).CrossRefGoogle Scholar
  11. [11]
    J. W. Ha, H. Ryu, S. J. Lee and W. J. Lee, J. Korean Phys. Soc. 8, 802 (2017).CrossRefGoogle Scholar
  12. [12]
    M. Xu, P. Da, H. Wu, D. Zhao and G. Zheng, Nano Lett. 12, 1503 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    M. Liu, N. de L. Snapp and H. Park, Chem. Sci. 2, 80 (2011).CrossRefGoogle Scholar
  14. [14]
    R. Wang, X. Xu, Y. Zhang, Z. Chang, Z. Sun and W-F. Dong, Nanoscale 7, 11082 (2015).ADSCrossRefGoogle Scholar
  15. [15]
    P. Zhang, T. Wang and J. Gong, Adv. Mater. 27, 5328 (2015).CrossRefGoogle Scholar
  16. [16]
    C. Butchosa, P. Guiglion and M. A. Zwijnenburg, J. Phys. Chem. C 118, 24833 (2014).CrossRefGoogle Scholar
  17. [17]
    B. Liu, C-H. Wu, J. Miao and P. Yang, ACS Nano. 8, 11739 (2014).CrossRefGoogle Scholar
  18. [18]
    F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo and A. Naldoni, ACS Catal. 5, 5292 (2015).CrossRefGoogle Scholar
  19. [19]
    Z. Zhang and P. Wang, J. Mater. Chem. 22, 2456 (2012).CrossRefGoogle Scholar
  20. [20]
    H. Qi, J. Wolfe, D. Fichou and Z. Chen, Sci. Rep. 6, 30882 (2016).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep. 6, 35158 (2016).ADSCrossRefGoogle Scholar
  22. [22]
    K. Gelderman, L. Lee and S. W. Donne, J. Chem. Educ. 84, 685 (2007).CrossRefGoogle Scholar
  23. [23]
    W. P. Gomes and F. Cardon, Prog. Surf. Sci. 12, 155 (1982).ADSCrossRefGoogle Scholar
  24. [24]
    M. H. S. Owen, C. Guo, S-H. Chen, C-T. Wan, C C. Cheng, C-H. Wu, C-H. Ko, C. H. Wann, Ivana, Z. Zhang, J. Sheng Pan and Y-C. Yeo, Appl. Phys. Lett. 103, 031604 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    E. T. Yu, E. T. Croke, D. H. Chow, D. A. Collins, M. C. Phillips, T. C. McGill, J. O. McCaldin and R. H. Miles, J. Vac. Sci. Technol. B. 8, 908 (1990).CrossRefGoogle Scholar
  26. [26]
    A. G. Tamirat, J. Rick, A. A. Dubale, W-N. Su and B-J. Hwang, Nanoscale Horiz. 1, 243 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Mostafa Afifi Hassan
    • 1
  • Jin-Ho Kang
    • 1
  • Santosh S. Patil
    • 1
  • Muhammad Ali Johar
    • 1
  • Sang-Wan Ryu
    • 1
    Email author
  • Suk-In Park
    • 2
  • Jindong Song
    • 2
  1. 1.Department of PhysicsChonnam National UniversityGwangjuKorea
  2. 2.Center for Optoelectronic Materials and DevicesKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations