Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1089–1092 | Cite as

Elastic Anisotropy and Slowness Curves of BaTiO3 Single Crystals in the Paraelectric Phase Studied by Brillouin Spectroscopy

  • Jeong Woo Lee
  • Jae-Hyeon KoEmail author
  • Krystian Roleder
  • D. Rytz
Article
  • 2 Downloads

Abstract

Elastic anisotropy and slowness curves of barium titanate (BaTiO3) single crystal in the paraelectric phase were investigated by using Brillouin spectroscopy. The directional dependence of sound velocities of the longitudinal and the transverse acoustic waves in the (001) plane showed a four-fold symmetry typical in the cubic phase. Especially, one of the two transverse modes exhibited a substantial softening along the <110> directions. The sound velocity of this mode decreased significantly as temperature decreased toward the transition temperature, which corresponded to the elastic stiffness coefficient (C11 – C12)/2. This result suggests the tetragonal instability caused by the precursor polar clusters in the paraelectric phase of BaTiO3.

Keywords

Barium titanate Sound velocity Elastic constant Slowness curve Brillouin scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Hallym University Research Fund, 2019 (HRF-201905-014).

References

  1. [1]
    K. Wieczorek et al., Ferroelectrics 336, 61 (2006).CrossRefGoogle Scholar
  2. [2]
    M. Takagi and T. Ishidate, Solid State Commun. 113, 423 (2000).CrossRefGoogle Scholar
  3. [3]
    A. Ziebi´nska et al., J. Phys.: Condens.Matter 20, 142202 (2008).Google Scholar
  4. [4]
    A. M. Pugachev et al., Phys. Rev. Lett. 108, 247601 (2012).CrossRefGoogle Scholar
  5. [5]
    K. Namikawa et al., Phys. Rev. Lett. 103, 197401 (2009).CrossRefGoogle Scholar
  6. [6]
    I. Ponomareva et al., Phys. Rev. B 77, 012102 (2008).CrossRefGoogle Scholar
  7. [7]
    J.-H. Ko et al., Appl. Phys. Lett. 93, 102905 (2008).CrossRefGoogle Scholar
  8. [8]
    J.-H. Ko et al., Phys. Rev. B 84, 094123 (2011).CrossRefGoogle Scholar
  9. [9]
    E. K. H. Salje et al., Phys. Rev. B 87, 014106 (2013).CrossRefGoogle Scholar
  10. [10]
    S. Kashida, I. Hatta, A. Ikushima and Y. Yamada, J. Phys. Soc. Jpn. 34, 997 (1973).CrossRefGoogle Scholar
  11. [11]
    S. Tsukada, Y. Hiraki, Y. Akishige and S. Kojima, Phys. Rev. B 80, 012102 (2009).CrossRefGoogle Scholar
  12. [12]
    Z. Li, M. Grimsditch, C. M. Foster and S.-K. Chan, J. Phys. Chem. Solids 57, 1433 (1996).CrossRefGoogle Scholar
  13. [13]
    J.-H. Ko et al., Curr. Appl. Phys. 12, 1185 (2012).CrossRefGoogle Scholar
  14. [14]
    J. W. Lee, J.-H. Ko, K. Roleder and D. Rytz, Appl. Phys. Lett. 114, 072901 (2019).CrossRefGoogle Scholar
  15. [15]
    D. Royer and E. Dieulesaint, Elastic Waves in Solids I (Berlin, Springer, 1999).zbMATHGoogle Scholar
  16. [16]
    R. A. Cowley, Phys. Rev. B 13, 4877 (1976).CrossRefGoogle Scholar
  17. [17]
    B. Zalar, V. V. Laguta and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003).CrossRefGoogle Scholar
  18. [18]
    B. Zalar et al., Phys. Rev. B 71, 064107 (2005).CrossRefGoogle Scholar
  19. [19]
    O. Aktas, M. A. Carpenter and E. K. H. Salje, Appl. Phys. Lett. 103, 142902 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Jeong Woo Lee
    • 1
  • Jae-Hyeon Ko
    • 1
    Email author
  • Krystian Roleder
    • 2
  • D. Rytz
    • 3
  1. 1.Department of PhysicsHallym UniversityChuncheonKorea
  2. 2.Institute of PhysicsUniversity of SilesiaChorzówPoland
  3. 3.Forschungsinstitut für Mineralische und Metallische WerkstoffeEdelsteine/Edelmetalle GmbH (FEE)Idar-ObersteinGermany

Personalised recommendations