Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1085–1088 | Cite as

Lambda (λ) Transition in the Heat Capacity by Finite Block Spin Phenomenology

  • Kwang-Sei Lee
  • Je Huan Koo
  • Cheol Eui LeeEmail author
Article
  • 7 Downloads

Abstract

We explain the lambda (λ) transition in the heat capacity in terms of spin freezing on the basis of finite-sized block spin concepts. Thus, the spin-glass phase or the antiferromagnetic/paramagnetic phase near the Néel temperature may be considered as a short-range ordering of the block spins comprised of many random spins with respective majority spin directions. Using the Curie law for the block spins, we obtain the λ-type heat capacity in the lower and the higher temperature approximations of the Brillouin function. The theoretical heat capacity gives a good fit to the experimental data.

Keywords

Heat capacity N´eel temperature Lambda (λ) transition Antiferromagnetic phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (Project Nos. 2016R1D1A1A0991 7003 and 2019R1A2C1002076).

References

  1. [1]
    A. B. Pippard, Elements of Classical Thermodynamics (Cambridge, New York, 1966), Chap. 9.Google Scholar
  2. [2]
    J. J. White, H. I. Song, J. E. Rives and D. P. Landau, Phys. Rev. B 4, 4605 (1971).CrossRefGoogle Scholar
  3. [3]
    L. J. de Jongh, D. D. Betts and D. J. Austen, Solid State Commun. 15, 1711 (1974).CrossRefGoogle Scholar
  4. [4]
    M. Okaji and T. Watanabe, J. Phys. Soc. Jpn. 40, 589 (1976).CrossRefGoogle Scholar
  5. [5]
    K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).CrossRefGoogle Scholar
  6. [6]
    K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge, New York, 1991).CrossRefGoogle Scholar
  7. [7]
    S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).CrossRefGoogle Scholar
  8. [8]
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975).CrossRefGoogle Scholar
  9. [9]
    P. A. Beck, J. Less-Common Metals 28, 193 (1972).CrossRefGoogle Scholar
  10. [10]
    P. A. Beck, Met. Trans. 2, 2015 (1971).CrossRefGoogle Scholar
  11. [11]
    S. Chakravorty, P. Panigrahy and P. A. Beck, J. Appl. Phys. 42, 1698 (1971).CrossRefGoogle Scholar
  12. [12]
    S. N. Kaul, V. Siruguri and G. Chandra, Phys. Rev. B 45, 12343 (1992).CrossRefGoogle Scholar
  13. [13]
    Y. Tsunoda, N. Hiruma, J. L. Robertson and J. W. Cable, Phys. Rev. B 56, 11051 (1997).CrossRefGoogle Scholar
  14. [14]
    M. Hirano and Y. Tsunoda, Phys. Rev. B 59, 13835 (1999).CrossRefGoogle Scholar
  15. [15]
    J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).Google Scholar
  16. [16]
    A. V. Klopper and R. L. Stamps, Phys. Rev. B 74, 214402 (2006).CrossRefGoogle Scholar
  17. [17]
    S. Miga, J. Dec and W. Kleemann, Non-Linear Dielectric Response of Ferroelectrics, Relaxors and Dipolar Glasses in Ferroelectrics — Characterization and Modeling, edited by M. Lallart (InTech, Rijeka, Croatia, 2011), Chap. 10.Google Scholar
  18. [18]
    M. D. Glinchuk, A. V. Ragulya and V. A. Stephanovich, Nanoferroics (Springer, Dordrecht, 2013), pp. 17–30.CrossRefGoogle Scholar
  19. [19]
    See, Phys. Status Solidi B 251, 1957 (2014), for recent intensive research on the formation of multiple ferroic glasses (magnetic, polar and strain glass).Google Scholar
  20. [20]
    D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).Google Scholar
  21. [21]
    D. I. Uzunov, Introduction to the Theory of Critical Phenomena: Mean Field, Fluctuations and Renormalization, 2nd ed. (World Scientific, Singapore, 2010).CrossRefzbMATHGoogle Scholar
  22. [22]
    D. J. Kim, New Perspectives in Magnetism of Metals (Kluwer/Plenum, New York, 1999), pp. 27–34. In this book, Kim considered a crystal in which each atom has an atomic spin Sj at the site j. He assumed that there are no interactions among these spins for a description of the magnetism of insulators. Our finite block spin approach is an extension of Kim’s work, and is in a one-to-one correspondence with his formulation. Instead of atomic spin Sj, a block pseudo-spin S→i is introduced to represent the short-range antiferromagnetic ordering at the block site i.CrossRefGoogle Scholar
  23. [23]
    J. H. Koo, G. Cho and J.-J. Kim, Solid State Commun. 149, 827 (2009).CrossRefGoogle Scholar
  24. [24]
    K.-S. Lee, J. H. Koo and C. E. Lee, Solid State Commun. 240, 10 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano Science & Engineering, Center for Nano ManufacturingInje UniversityGimhaeKorea
  2. 2.Department of Electrical and Biological PhysicsKwangwoon UniversitySeoulKorea
  3. 3.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations