Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1052–1058 | Cite as

High-Speed and Low-Temperature Atmospheric Photo-Annealing of Large-Area Solution-Processed IGZO Thin-Film Transistors by Using Programmable Pulsed Operation of Xenon Flash Lamp

  • Jeong-Wan Jo
  • Kyung-Tae Kim
  • Ho-Hyun Park
  • Sung Kyu ParkEmail author
  • Jae Sang Heo
  • Insoo Kim
  • Myung-Jae LeeEmail author
Article
  • 8 Downloads

Abstract

An efficient photo-annealing approach for high-performance solution-processed metal-oxide thin film transistors (TFTs) was demonstrated by using programmable pulse operation of xenon flash lamp. The flash lamp annealing (FLA) process could offer not only low-temperature (≈100° C) processing but also ultra-fast annealing speed of the order of seconds under air ambient conditions. Solution-processed amorphous indium-gallium-zinc-oxide (α-IGZO) TFTs implemented by the FLA process typically exhibited much improved electrical performance such as saturation mobility of >10.8 cm2V−11s−1, ION/IOPP of >108, and subthreshold slope of as steep as 0.24 V/dec. X-ray photoelectron spectroscopy analysis of a-IGZO films indicates that the FLA can provide sufficient activation energy for rapid formation of solid a-IGZO bonds within 30 s. The high-quality metal-oxide films achieved by an atmospheric and low temperature FLA method may represent a significant advance for scalable fabrication of flexible and printed metal-oxide electronics.

Keywords

Metal-oxide semiconductors Low temperature solution-process Thin-film transistor Flash lamp annealing Roll-to-roll process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported, in part, by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2017-0-00048, Development of Core Technologies for Tactile Input/Output Panels in Skintronics (Skin Electronics)), as well as, in part, by the Chung-Ang University Graduate Research Scholarship in 2015.

References

  1. [1]
    M. Ryu et al., Adv. Mater. 21, 678 (2008).Google Scholar
  2. [2]
    S. Inoue et al., Phys. Status Solid Appl. Mater. Sci. 212, 2133 (2015).CrossRefGoogle Scholar
  3. [3]
    Y. S. Rim et al., ACS Nano 11, 4710 (2017).CrossRefGoogle Scholar
  4. [4]
    I. C. Wang et al., Adv. Mater. Interfaces 4, 1700020 (2017).CrossRefGoogle Scholar
  5. [5]
    X. Yu et al., Adv. Mater. 26, 7170 (2014).CrossRefGoogle Scholar
  6. [6]
    X. Liu et al., Adv. Mater. 26, 2919 (2014).CrossRefGoogle Scholar
  7. [7]
    J. Kim et al., Adv. Mater. 28, 3078 (2016).CrossRefGoogle Scholar
  8. [8]
    M. Lee et al., Adv. Mater. 29, 1700951 (2017).CrossRefGoogle Scholar
  9. [9]
    M. G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks, Nat. Mater. 10, 382 (2011).CrossRefGoogle Scholar
  10. [10]
    S. Jeong et al., Adv. Mater. 22, 1346 (2010).CrossRefGoogle Scholar
  11. [11]
    A. R. Uhl et al., Adv. Mater. 26, 632 (2013).Google Scholar
  12. [12]
    H. Park et al., NPG Asia Mater. 5, e45 (2013).CrossRefGoogle Scholar
  13. [13]
    Y. Yamashita et al., Nat. Mater. 10, 45 (2010).Google Scholar
  14. [14]
    J. W. Jo et al., ACS Appl. Mater. Interfaces 9, 35114 (2017).CrossRefGoogle Scholar
  15. [15]
    S. K. Park et al., Nature 489, 128 (2012).CrossRefGoogle Scholar
  16. [16]
    Y. S. Rim et al., J. Mater. Chem. 22, 12491 (2012).CrossRefGoogle Scholar
  17. [17]
    S. Y. Han, G. S. Herman, and C. H. Chang, J. Am. Chem. Soc. 133, 5166 (2011).CrossRefGoogle Scholar
  18. [18]
    Y. H. Yang, S. S. Yang and K. Sen Chou, IEEE Electron Device Lett. 31, 969 (2010).CrossRefGoogle Scholar
  19. [19]
    T. Jun et al., J. Mater. Chem. 21, 1102 (2011).CrossRefGoogle Scholar
  20. [20]
    T. H. Yoo et al., RSC Adv. 4, 19375 (2014).CrossRefGoogle Scholar
  21. [21]
    W. H. Lee, S. J. Lee, J. A. Lim and J. H. Cho, RSC Adv. 5, 78655 (2015).CrossRefGoogle Scholar
  22. [22]
    D. W. Kim et al., Electron. Mater. Lett. 11, 82 (2015).CrossRefGoogle Scholar
  23. [23]
    K. Tetzner et al., J. Mater. Chem. C 5, 59 (2016).CrossRefGoogle Scholar
  24. [24]
    H. Kim et al., IEEE Electron Device Lett. 37, 595 (2016).CrossRefGoogle Scholar
  25. [25]
    S. C. Park et al., J. Inf. Disp. 17, 1 (2016).CrossRefGoogle Scholar
  26. [26]
    M. Benwadih et al., ACS Appl. Mater. Interfaces 8, 34513 (2016).CrossRefGoogle Scholar
  27. [27]
    K. Tetzner et al., J. Mater. Chem. C 5, 11724 (2017).CrossRefGoogle Scholar
  28. [28]
    T. D. Anthopoulos et al., Appl. Surf. Sci. 479, 974 (2019).CrossRefGoogle Scholar
  29. [29]
    W. B. Gu and Z. Cui, Appl. Mech. Mater. 748, 187 (2015).CrossRefGoogle Scholar
  30. [30]
    Heraeus Noblelight’s R&D Team, The Heraeus Noble-light Technical Reference Book for Arc and Flash Lamps (n.d.), pp. 11–26.Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Jeong-Wan Jo
    • 1
  • Kyung-Tae Kim
    • 1
  • Ho-Hyun Park
    • 1
  • Sung Kyu Park
    • 1
    Email author
  • Jae Sang Heo
    • 2
  • Insoo Kim
    • 2
  • Myung-Jae Lee
    • 3
    Email author
  1. 1.School of Electrical and Electronic EngineeringChung-Ang UniversitySeoulKorea
  2. 2.Department of MedicineUniversity of Connecticut School of MedicineFarmingtonUSA
  3. 3.Division of Nano and Energy Convergence ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguKorea

Personalised recommendations