Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1039–1045 | Cite as

Intersubband Transitions in Nonpolar GaN-based Resonant Phonon Depopulation Multiple-Quantum Wells for Terahertz Emissions

  • Ya-Feng SongEmail author
  • Xiong-Xiong Kong
  • Wei-Bin Tang
  • Zhong-Qiang Suo
  • Huan Zhang
  • Chen-Yang Li
  • Qian Jia
  • Cai-Xia Xue
  • Yan-Wu LuEmail author
  • Chao-Pu Yang


We investigate the polarization effect in intersubband transitions in polar and nonpolar GaN-based multiple-quantum well (MQW) structures for terahertz (THz) emissions by using systematic comparisons and design a nonpolar GaN/Al0.2Ga0.8N two-well-based MQW structure with an emitting photon of 7.27 THz (30.07 meV). Its lower energy separation (92.7 meV) matches the resonant phonon depopulation condition for better population inversion. It shows a lower threshold current density Jth at all temperatures (1.548 kA/cm2 at 90 K) and a higher output power of up to 86.1 mW at 5.8 K and 33.6 mW at 100 K. Our results for the polar GaN MQW are very close to the experimental data in the literature. We find that the Jth of the nonpolar GaN MQW increases more slowly than that of the polar GaN MQW as temperature increases, indicating the nonpolar GaN MQW may be a worth-trying direction for improving the operation temperature. These results can provide meaningful references for the design and fabrication of nonpolar GaN-based THz MQW or quantum cascade structures.


Nonpolar GaN multiple-quantum well Resonant phonon depopulation Terahertz intersubband transitions Quantum cascade structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Prof. Hongming Zhang, Lai Wang and Zhibiao Hao greatly for helpful discussions; Kamran Rajabi, Jiadong Yu, Xun Wang, Lei Wang et al. in Tsinghua National Laboratory on Information Science and Technology and Department of Electronic Engineering for great help in this work; the National Natural Science Foundation of China (No. 61864 008), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ6011), Shanghai Young College Teachers Training Scheme (No. ZZSDJ13004), and Shangluo University Science and Technology Research Fund Project (No. 15SKY025) for financial support.


  1. [1]
    B. S. Williams, Nat. Photonics 1, 517 (2007).CrossRefGoogle Scholar
  2. [2]
    J. Faist et al., Science 264, 553 (1994).CrossRefGoogle Scholar
  3. [3]
    R. Kohler et al., Nature 417, 156 (2002).CrossRefGoogle Scholar
  4. [4]
    K. Ahi, Opt. Eng. 56, 090901 (2017).CrossRefGoogle Scholar
  5. [5]
    X. F. Jia et al., IEEE Photon. Technol. Lett. 29, 1959 (2017).CrossRefGoogle Scholar
  6. [6]
    Y. H. Zhu et al., Chin. Opt. Lett. 15, 5 (2017).Google Scholar
  7. [7]
    T. T. Lin and H. Hirayama, Phys. Status Solidi. A 215, 1700424 (2018).CrossRefGoogle Scholar
  8. [8]
    M. A. Stroscio, M. Kisin, G. Belenky and S. Luryi, Appl. Phys. Lett. 75, 3258 (1999).CrossRefGoogle Scholar
  9. [9]
    J. L. Liu et al., Chin. Opt. Lett. 11, 041409 (2013).CrossRefGoogle Scholar
  10. [10]
    A. Jiang et al., J. Appl. Phys. 115, 163103 (2014).CrossRefGoogle Scholar
  11. [11]
    B. S. Williams et al., Appl. Phys. Lett. 82, 1015 (2003).CrossRefGoogle Scholar
  12. [12]
    S. Fathololoumi et al., Opt. Express 20, 3866 (2012).CrossRefGoogle Scholar
  13. [13]
    W. Terashima and H. Hirayama, Proc. SPIE 9483, 948304 (2015).CrossRefGoogle Scholar
  14. [14]
    K. Wang et al., Appl. Phys. Lett. 113, 061109 (2018).CrossRefGoogle Scholar
  15. [15]
    G. Sun, R. A. Soref and J. B. Khurgin, Superlattices Microstruct. 37, 107 (2005).CrossRefGoogle Scholar
  16. [16]
    A. Y. Song et al., Appl. Phys. Lett. 107, 132104 (2015).CrossRefGoogle Scholar
  17. [17]
    F. Bernardini and V. Fiorentini, Phys. Rev. B 57, R9427 (1998).CrossRefGoogle Scholar
  18. [18]
    P. K. Kandaswamy et al., J. Appl. Phys. 104, 093501 (2008).CrossRefGoogle Scholar
  19. [19]
    C. B. Lim et al., J. Appl. Phys. 118, 014309 (2015).CrossRefGoogle Scholar
  20. [20]
    H. Machhadani et al., J. Appl. Phys. 113, 143109 (2013).CrossRefGoogle Scholar
  21. [21]
    Y. Zhao et al., Appl. Phys. Lett. 100, 201108 (2012).CrossRefGoogle Scholar
  22. [22]
    C. Jirauschek and T. Kubis, Appl. Phys. Rev. 1, 011307 (2014).CrossRefGoogle Scholar
  23. [23]
    H. Morkoc, Nitride Semiconductor Devices (Springer, Berlin, 1999), p. 27.CrossRefGoogle Scholar
  24. [24]
    J. Faist et al., Appl. Phys. Lett. 68, 3680 (1996).CrossRefGoogle Scholar
  25. [25]
    J. Faist et al., IEEE Photonics Technol. Lett. 10, 1100 (1998).CrossRefGoogle Scholar
  26. [26]
    A. Wittmann, High Performance Quantum Cascade Laser Sources for Spectroscopic Applications, Ph.D thesis, Technische Universität München, 2009 (DISS. ETH Nr. 18363), p. 47.Google Scholar
  27. [27]
    G. P. A. and N. K. Dutta, Long-Wavelength Semiconductor Laser (Van Nostrand Reinhold Company Inc., Canada, 1986), p. 86.Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Ya-Feng Song
    • 1
    Email author
  • Xiong-Xiong Kong
    • 1
  • Wei-Bin Tang
    • 1
  • Zhong-Qiang Suo
    • 1
  • Huan Zhang
    • 1
  • Chen-Yang Li
    • 1
  • Qian Jia
    • 1
  • Cai-Xia Xue
    • 1
  • Yan-Wu Lu
    • 2
    Email author
  • Chao-Pu Yang
    • 3
  1. 1.Department of Physics, College of Electronic Information and Electrical EngineeringShangluo UniversityShangzhouChina
  2. 2.Department of PhysicsBeijing Jiaotong UniversityBeijingChina
  3. 3.College of Chemical Engineering and Modern MaterialsShangluo UniversityShangzhouChina

Personalised recommendations