Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1032–1038 | Cite as

Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide

  • Soo Ho Choi
  • You Joong Kim
  • Woochul YangEmail author
  • Ki Kang Kim
Article
  • 22 Downloads

Abstract

We report alkali metal-assisted growth of monolayer molybdenum disulfide (MoS2) by chemical vapor deposition. Single-layer MoS2 flakes with high-quality and large-scale (>∼200 μm) are successfully fabricated on alkali metal-coated SiO2 substrates. On the other hand, particle-like MoS2 tends to grow on bare SiO2 substrates. Detailed growth process of layered MoS2 with surface-coated alkali metal is suggested. A series of experimental and theoretical results indicate that alkali metals play a role in strong surface adsorption and re-supply of molybdenum precursor to the growth surface during lateral growth of MoS2. We believe that our results will provide fruitful information for large-scale or selective-area growth of single-layered transition metal dichalcogenides.

Keywords

Chemical vapor deposition Molybdenum disulfide Single-layer Alkali metal Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1002844) and the Ministry of Education (No. 2016R1A6A1A03012877). It was also partially supported by the research program of Dongguk University, 2017.

References

  1. [1]
    K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
  2. [2]
    A. Splendiani et al., Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
  3. [3]
    H. Li et al., Adv. Func. Mater. 22, 1385 (2012).CrossRefGoogle Scholar
  4. [4]
    H. L. Z Zeng et al., Nat. Nanotechnol. 7, 490 (2012).CrossRefGoogle Scholar
  5. [5]
    X. D. Duan et al., Chem. Soc. Rev. 44, 8859 (2015).CrossRefGoogle Scholar
  6. [6]
    M. K. Jana and C. N. Rao, Philos. Trans. A Math. Phys. Eng. Sci. 374, 2076 (2016).CrossRefGoogle Scholar
  7. [7]
    K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).CrossRefGoogle Scholar
  8. [8]
    H. Peelaers and C. G. Van de Walle, Phys. Rev. B 86, 241401 (2012).CrossRefGoogle Scholar
  9. [9]
    B. Radisavljevic et al., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  10. [10]
    H. Wang et al., Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
  11. [11]
    H. Liu et al., Nano Lett. 13, 2640 (2013).CrossRefGoogle Scholar
  12. [12]
    J. H. Kang, W. Liu and K. Banerjee, Appl. Phys. Lett. 104, 093106 (2014).CrossRefGoogle Scholar
  13. [13]
    X. Tong et al., Nano-Micro Lett. 7, 203 (2015).CrossRefGoogle Scholar
  14. [14]
    A. Nourbakhsh et al., Nano Lett. 16, 7798 (2016).CrossRefGoogle Scholar
  15. [15]
    J. Shim and J. H. Park, Org. Electron. 33, 172 (2016).CrossRefGoogle Scholar
  16. [16]
    L. L. Yu et al., Nano Lett. 16, 6349 (2016).CrossRefGoogle Scholar
  17. [17]
    G. Eda et al., Nano Lett. 11, 5111 (2011).CrossRefGoogle Scholar
  18. [18]
    H. Li, J. M. Wu, Z. Y. Yin and H. Zhang, Acc. Chem. Res. 47, 1067 (2014).CrossRefGoogle Scholar
  19. [19]
    X. B. Fan et al., Nano Lett. 15, 5956 (2015).CrossRefGoogle Scholar
  20. [20]
    G. Z. Magda et al., Sci. Rep. 5, 14714 (2015).CrossRefGoogle Scholar
  21. [21]
    Y. H. Lee et al., Adv. Mater. 24, 2320 (2012).CrossRefGoogle Scholar
  22. [22]
    A. M. van der Zande et al., Nat. Mater. 12, 554 (2013).CrossRefGoogle Scholar
  23. [23]
    X. Ling et al., Nano Lett. 14, 464 (2014).CrossRefGoogle Scholar
  24. [24]
    S. S. Wang et al., Chem. Mater. 26, 6371 (2014).CrossRefGoogle Scholar
  25. [25]
    Y. M. Shi et al., Nano Lett. 12, 2784 (2012).CrossRefGoogle Scholar
  26. [26]
    Y. J. Zhan et al., Small 8, 966 (2012).CrossRefGoogle Scholar
  27. [27]
    Q. Q. Ji et al., Nano Lett. 13, 3870 (2013).CrossRefGoogle Scholar
  28. [28]
    Y. F. Yu et al., Sci. Rep. 3, 1866 (2013).CrossRefGoogle Scholar
  29. [29]
    Y. Lee et al., Nanoscale 6, 2821 (2014).CrossRefGoogle Scholar
  30. [30]
    L. K. Tan et al., Nanoscale 6, 10584 (2014).CrossRefGoogle Scholar
  31. [31]
    K. Kang et al., Nature 520, 656 (2015).CrossRefGoogle Scholar
  32. [32]
    W. Wan et al., Rsc Adv. 6, 323 (2016).CrossRefGoogle Scholar
  33. [33]
    S. L. Shang et al., Nano Lett. 16, 5742 (2016).CrossRefGoogle Scholar
  34. [34]
    H. Kim et al., Nanotechnology 28, 36LT01 (2017).Google Scholar
  35. [35]
    S. M. Kim et al., Nat. Commun. 6, 8662 (2015).CrossRefGoogle Scholar
  36. [36]
    S. H. Chae et al., Nat. Mater. 12, 403 (2013).CrossRefGoogle Scholar
  37. [37]
    J. Wienold, R. E. Jentoft and T. Ressler, Eur. J. Inorg. Chem. 6, 1058 (2003).CrossRefGoogle Scholar
  38. [38]
    M. Anwar, C. A. Hogarth and R. Bulpett, J. Mater. Sci. 25, 1784 (1990).CrossRefGoogle Scholar
  39. [39]
    T. Sheng, B. Cao, Y. Zhang and H. Zhang, Cryst. Eng. Comm. 17, 1139 (2015).CrossRefGoogle Scholar
  40. [40]
    D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer academic publishers, Dordrecht, 2003).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Soo Ho Choi
    • 1
  • You Joong Kim
    • 1
  • Woochul Yang
    • 1
    Email author
  • Ki Kang Kim
    • 2
  1. 1.Department of PhysicsDongguk UniversitySeoulKorea
  2. 2.Department of Energy and Materials EngineeringDongguk UniversitySeoulKorea

Personalised recommendations