Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1027–1031 | Cite as

Influence of Bi Excess on the Structural and Morphological Properties of Bi0.5K0.5TiO3 Synthesized by Using the Hydrothermal Method and Its Nanogenerator Properties

  • Seon Yong Kim
  • Eun Young Kim
  • Sang Don BuEmail author
  • Jin Kyu Han
  • Da Som Song
  • Jongsun Lim
  • Ki-Seok An
Article
  • 6 Downloads

Abstract

This study investigated the effects of an excess of bismuth in Bi0.5K0.5TiO3 (BKT) on its structural and morphological properties. Two types of BKT samples were prepared using bismuth stoichiometry, where one with a Bi:K molar ratio of 1:1 (S-BKT) and the other with a ratio of 1.1:1 with 10 mol% excess of Bi (10% BKT). These samples were prepared using the hydrothermal synthesis method. When the X-ray diffraction (XRD) data for the two samples were compared, the 10% BKT shows a 1.3 times larger than that for the S-BKT sample in the ratio of the secondary phase peak to the BKT (101) peak at approximately 29.3°. Morphology analysis showed that both samples had agglomerations with diameters of approximately 200 nm and nanowires with lengths of 1–2 μm and diameters of 8 nm. The fractions of the total area occupied by agglomerations in the two samples were estimated at approximately 95% for 10% BKT and approximately 45% for S-BKT. These results indicate that an excess of bismuth affects the secondary phase and agglomeration formation. Nanogenerators were prepared by mixing S-BKT, and their output voltages were 1.8 V and their outputs currents were 4 nA.

Keywords

Bi0.5K0.5TiO3 nanowires Piezoelectric properties Nanogenerators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by “Research Base Construction Fund Support Program” funded by Chonbuk National University in 2018, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B6006740), and by a cooperation project of “SI1803-01 (Development of smart chemical materials for IoT devices)” by the Korea Research Institute of Chemical Technology (KRICT).

References

  1. [1]
    W. Wu et al., ACS Nano 6, 6231 (2012).CrossRefGoogle Scholar
  2. [2]
    J. Kim et al., Nano Lett. 8, 1813 (2008).CrossRefGoogle Scholar
  3. [3]
    J. K. Han et al., Sci. Rep. 6, 29562 (2016).CrossRefGoogle Scholar
  4. [4]
    J. K. Han et al., Nanomaterials 7, 308 (2017).CrossRefGoogle Scholar
  5. [5]
    Z. L. Wang and J. Song, Science 321, 242 (2006).CrossRefGoogle Scholar
  6. [6]
    C. F. Buhrer, J. Chem. Phys. 36, 798 (1962).CrossRefGoogle Scholar
  7. [7]
    A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).CrossRefGoogle Scholar
  8. [8]
    R. Zuo, X. Fang and C. Ye, J. Am. Ceram. 90, 2424 (2007).CrossRefGoogle Scholar
  9. [9]
    H. Matsuo et al., J. Appl. Phys. 108, 104103 (2010).CrossRefGoogle Scholar
  10. [10]
    Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).CrossRefGoogle Scholar
  11. [11]
    Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 46, 1081(2007).CrossRefGoogle Scholar
  12. [12]
    K. Tabuchi, H. Nagata and T. Takenaka, J. Ceram. Soc. Jpn. 121, 623 (2013).CrossRefGoogle Scholar
  13. [13]
    J. König et al., J. Eur. Ceram. Soc. 29, 1695 (2009).CrossRefGoogle Scholar
  14. [14]
    T. Zaremba, J. Therm. Anal. Calorim. 74, 653 (2003).CrossRefGoogle Scholar
  15. [15]
    M. Hagiwara and S. Fujihara, J. Mater. Sci. 50, 5970 (2015).CrossRefGoogle Scholar
  16. [16]
    M. Yoshimura and K. Byrappa, J. Mater. Sci. 43, 2085 (2007).CrossRefGoogle Scholar
  17. [17]
    M. M. Lencka, M. Oledzka and R. E. Riman, Chem. Mater. 12, 1323 (2000).CrossRefGoogle Scholar
  18. [18]
    J. Chen and J. Cheng, J. Alloys. Comp. 589, 115 v.Google Scholar
  19. [19]
    A. Z. Simões et al., Mater. Lett. 59, 656 (2005).CrossRefGoogle Scholar
  20. [20]
    S. Y. Cho et al., Curr. Appl. Phys. 15, 1332 (2015).CrossRefGoogle Scholar
  21. [21]
    S. A. Yang, B. H. Kim and S. D. Bu, Ferroelectrics 533, 49 (2018).CrossRefGoogle Scholar
  22. [22]
    S. W. Kang et al., J. Korean Phys. Soc. 72, 1209 (2018).CrossRefGoogle Scholar
  23. [23]
    S. W. Kang, S. Y. Cho, S. D. Bu and J. K. Han, J. Korean Phys. Soc. 72, 800 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Seon Yong Kim
    • 1
  • Eun Young Kim
    • 1
  • Sang Don Bu
    • 1
    Email author
  • Jin Kyu Han
    • 2
  • Da Som Song
    • 2
  • Jongsun Lim
    • 2
  • Ki-Seok An
    • 2
  1. 1.Department of Physics and Research Institute of Physics and ChemistryChonbuk National UniversityJeonjuKorea
  2. 2.Thin Film Materials Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea

Personalised recommendations