Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 102–106 | Cite as

Fluorescence and Raman Enhancement Effect Caused by a Chemical Mechanism in Metal-Tetraphenylporphyrin on 2D Layered Materials

  • June Park
  • Young Min JhonEmail author


Two-dimensional (2D) layered materials exhibiting a flat surface have been strong candidates for studies investigating both the fundamental Raman enhancement in these materials and their practical applications. Here, we explore the Raman and the fluorescence enhancement effects of metal-tetraphenylporphyrin (TPP) molecules on graphene and MoSe2. We attribute the enhancement behaviors to the charge transfer interaction between the 2D materials and the adsorbates. The enhancement factors for the two flat substrates are dissimilar due to the charge transfer ability resulting from the electronic structures. The charge transfer interaction can be explained by the adsorption probability based on Langmuir’s model.


Raman enhancement Fluorescence enhancement Two-dimensional materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Louie, Chem. Rev. 110, 3146 (2010).CrossRefGoogle Scholar
  2. [2]
    A. Mishra, M. K. R. Fisher and P Bäuerle, Angew. Chem. Int. Ed. 48, 2474 (2009).CrossRefGoogle Scholar
  3. [3]
    J. Koo, Y. I. Jhon, J. Park, J. lee, Y. M. Jhon and J. H. Lee, Adv. Func. Mater. 26, 7454 (2016).CrossRefGoogle Scholar
  4. [4]
    Y. I. Jhon, Y. Kim, J. Park, J. H. Kim, T. Lee, M, Seo and Y, M, Jhon, Adv. Func. Mater. 26, 7551 (2016).CrossRefGoogle Scholar
  5. [5]
    Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi and Y. M. Jhon, Adv. Mater. 29, 1702496 (2017).CrossRefGoogle Scholar
  6. [6]
    A. Campion and P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998).CrossRefGoogle Scholar
  7. [7]
    R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley-Intersciecne, New York, 2000).CrossRefGoogle Scholar
  8. [8]
    R. J. H. Clark and T. J. Dines, Angew. Chem. Int. Ed. Engl. 25, 131 (1986).CrossRefGoogle Scholar
  9. [9]
    A. G. Brolo, D. E. Irish and B. D. Smith, J. Mol. Struct. 405, 29 (1997).ADSCrossRefGoogle Scholar
  10. [10]
    R. Petry, M. Schmitt and J. Popp, ChemPhysChem 4, 14 (2003).CrossRefGoogle Scholar
  11. [11]
    A. Otto, I. Mrozek, H. Grabhorn and W. Akemann, J. Phys.: Condens. Matter 4, 1143 (1992).ADSGoogle Scholar
  12. [12]
    K. Chen, M. Leona and T. Vo-Dinh, Sens. Rev. 27, 109 (2007).CrossRefGoogle Scholar
  13. [13]
    G. C. Schatz, M. A. Young and R. P. Duyne, (Springer, Berlin, Heidelberg, 2006), p. 19.Google Scholar
  14. [14]
    B. N. J. Persson, K. Zhao and Z. Zhang, Phys. Rev. Lett. 96, 207401 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu and J. Zhang, Proceedings of the National Academy of Sciences 109, 9281 (2012).ADSCrossRefGoogle Scholar
  17. [17]
    X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. Liu, Nano Lett. 10, 553 (2010).ADSCrossRefGoogle Scholar
  18. [18]
    P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang, B. Boekfa and M. Ehara, Environ. Sci. Technol. 17, 48 (2014).Google Scholar
  19. [19]
    H. Bae, M. Park, B. Jang, Y. Kang, J. Park, H. Lee, H. Chung, C. Chung, S. Hong, Y. Kwon, B. I. Yakobson and H. Lee, Sci. Rep. 6, 21788 (2016).ADSCrossRefGoogle Scholar
  20. [20]
    X. Ling, W. Fang, Y-H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong and M. S. Dresselhaus, Nano Lett. 14, 3033 (2014).ADSCrossRefGoogle Scholar
  21. [21]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).ADSCrossRefGoogle Scholar
  22. [22]
    J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang and X. Duan, Nano Research 7, 511 (2015).CrossRefGoogle Scholar
  23. [23]
    X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou and Q. Xiong, Nano Lett. 14, 2419 (2014).ADSCrossRefGoogle Scholar
  24. [24]
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman and J. Wu, Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
  25. [25]
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).ADSCrossRefGoogle Scholar
  26. [26]
    A. C. Ferrari, Solid State Commun. 143, 47 (2007).ADSCrossRefGoogle Scholar
  27. [27]
    F. Paulat, V. K. K. Praneeth, C. Näther and N. Lehnert, Inorg. Chem. 45, 2835 (2006).CrossRefGoogle Scholar
  28. [28]
    H. Oshio, T. Ama, T. Watanabe, J. Kincaid and K. Nakamoto, Spectrochim. Acta Part A 40, 863 (1984).ADSCrossRefGoogle Scholar
  29. [29]
    H-Z. Yu, J. S. Baskin and A. H. Zewail, J. Phys. Chem. A 106, 9845 (2002).CrossRefGoogle Scholar
  30. [30]
    F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov and A. C. Ferrari, ACS Nano 4, 5617 (2010).CrossRefGoogle Scholar
  31. [31]
    T. Ichii, Y. Hosokawa, K. Kobayashi, K. Matsushige and H. Yamada, Appl. Phys. Lett. 94, 133110 (2009).ADSCrossRefGoogle Scholar
  32. [32]
    Y. Uehara and S. Ushioda, Appl. Phys. Lett. 86, 181905 (2005).ADSCrossRefGoogle Scholar
  33. [33]
    N. J. Tao, Phys. Rev. Lett. 76, 4066 (1996).ADSCrossRefGoogle Scholar
  34. [34]
    S. Karthikeyan and J. Y. Lee, J. Phys. Chem. A 117, 10973 (2013).CrossRefGoogle Scholar
  35. [35]
    N. S. Sariciftci, A. J. Heeger, V. Krasevec, P. Venturini, D. Mihailovic, Y. Cao, J. Libert and J. L. Brédas, Synth. Met. 62, 107 (1994).CrossRefGoogle Scholar
  36. [36]
    Z. Chen, P. Darancet, L. Wang, A. C. Crowther, Y. Gao, C. R. Dean, T. Taniguchi, K. Watanabe, J. Hone, C. A. Marianetti and L. E. Brus, ACS Nano 8, 2943 (2014).CrossRefGoogle Scholar
  37. [37]
    S. Mouri, Y. Miyauchi and K. Matsuda, Nano Lett. 13, 5944 (2013).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Optical Lens Research CenterKorea Photonics Technology InstituteGwangjuKorea
  2. 2.Sensor System Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations