Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1019–1026 | Cite as

Massive Generation Scheme for Controllable Entangled States by Mixing Two Coherent Beams with a Squeezed State

  • Sun-Hyun YounEmail author
Article
  • 1 Downloads

Abstract

In the two-cascade-placed beam splitter system, controllable entangled states can be conditionally generated with one squeezed light and two coherent lights. By measuring one photon in one of three output ports, an entangled quantum state can be generated in the remaining two ports. Using the Schmidt decomposition technique, we calculate the degree of entanglement, and maximize the degree of entanglement by adjusting the three input beams and the transmittances of the two beam splitters. The degree of entanglement can be easily adjusted by changing the relative phase angle of the input states.

Keywords

Nonclassical light Squeezed state Entangled state Photonic state engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B040 33018).

References

  1. [1]
    H. J. Kimble, Nature 453, 1023 (2008).CrossRefGoogle Scholar
  2. [2]
    C. A. Krocher and E. D. Commins, Phys. Rev. Lett. 18, 575 (1967).CrossRefGoogle Scholar
  3. [3]
    D. C. Burnham and D. I. Weinberg, Phys. Rev. Lett. 25, 84 (1970).CrossRefGoogle Scholar
  4. [4]
    P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).CrossRefGoogle Scholar
  5. [5]
    T.-S. Kim, H.-O. Kim, J.-H. Ko and G.-D. Park, J. Opt. Soc. Korea 7, 113 (2003).CrossRefGoogle Scholar
  6. [6]
    S. Y. Baek and Y. H. Kim, Phys. Rev. A 77, 043807 (2008).CrossRefGoogle Scholar
  7. [7]
    R. M. Stevenson et al., Nature 439, 179 (2006).CrossRefGoogle Scholar
  8. [8]
    O. Benson, C. Santori, M. Pelton and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).CrossRefGoogle Scholar
  9. [9]
    R. M. Stevenson et al., Phys. Rev. Lett. 101, 170501 (2008).CrossRefGoogle Scholar
  10. [10]
    X.-L. Wang et al., Phys. Rev. Lett. 117, 210502 (2016).CrossRefGoogle Scholar
  11. [11]
    I. Schwartz et al., Science 354, 434 (2016).CrossRefGoogle Scholar
  12. [12]
    R. McConnell et al., Nature 519, 439 (2015).CrossRefGoogle Scholar
  13. [13]
    M. S. Kim, J. Phys. B: At. Mol. Opt. Phys. 41, 133001 (2008).CrossRefGoogle Scholar
  14. [14]
    S. Wang, H.-y. Fan and L.-y. Hu, J. Opt. Soc. Am. B 29, 1020 (2012).CrossRefGoogle Scholar
  15. [15]
    K. J. Resch, J. S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 88, 113601 (2002).CrossRefGoogle Scholar
  16. [16]
    A. I. Lvovsky et al., Phys. Rev. Lett. 87, 050402 (2001).CrossRefGoogle Scholar
  17. [17]
    A. Zavatta, S. Viciani and M. Bellini, Science 306, 660 (2010).CrossRefGoogle Scholar
  18. [18]
    E. Bimbard, N. Jain, A. MacRae and A. I. Lvovsky, Nat. Photon. 4, 243 (2010).CrossRefGoogle Scholar
  19. [19]
    M. Dakna et al., Phys. Rev. A. 55, 3184 (1977).CrossRefGoogle Scholar
  20. [20]
    A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat and Ph. Grangier, Science 312, 83 (2006).Google Scholar
  21. [21]
    K. Wakui, H. Takahashi, A. Furusawa and M. Sasaki, Opt. Exp. 15, 3568 (2007).CrossRefGoogle Scholar
  22. [22]
    A. I. Lvovsky and J. Mylnek, Phys. Rev. Lett. 88, 250401 (2002).CrossRefGoogle Scholar
  23. [23]
    T. Gerrits et al., Phys. Rev. A 82, 031802 (2010).CrossRefGoogle Scholar
  24. [24]
    S. H. Youn, J. Korean Phys. Soc. 63, 1559 (2013).CrossRefGoogle Scholar
  25. [25]
    S. H. Youn, J. Korean Phys. Soc. 64, 217 (2014).CrossRefGoogle Scholar
  26. [26]
    S. H. Youn, State. Opt. Commun. 372, 215 (2016).CrossRefGoogle Scholar
  27. [27]
    R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, New York, 2000).zbMATHGoogle Scholar
  28. [28]
    R. A. Campos, B. E. A. Saleh and M. C. Teich, Phys. Rev. A 40, 1371 (1989).CrossRefGoogle Scholar
  29. [29]
    E. Schmidt, Math. Ann. 63, 161 (1907).CrossRefGoogle Scholar
  30. [30]
    O. Guhne and G. Toth, Phys. Rep. 474, 1 (2009).MathSciNetCrossRefGoogle Scholar
  31. [31]
    J. A. Miszczak, Int. J. of Mod. Phy. C 22, 897 (2011).CrossRefGoogle Scholar
  32. [32]
    Y. Liu, X. Zhang, M. Lewenstein and S.-J. Ran, arXiv:1803.09111v3 [stat.ML] (2018).Google Scholar
  33. [33]
    A. Laghaout et al., Phys. Rev. A 87, 043826 (2013).CrossRefGoogle Scholar
  34. [34]
    R. Dong et al., J. Opt. Soc. Am. B 31, 1192 (2014).CrossRefGoogle Scholar
  35. [35]
    V. Averchenko et al., Phys. Rev. A 96, 043922 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsChonnam National UniversityGwangjuKorea

Personalised recommendations