Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1011–1018 | Cite as

Optical and Electrical Properties of a Metal-Semiconductor-Metal Material Based on Al-Doped ZnO Films for Use as UV Photodetectors

  • Sorour Jafari
  • Mohammad Hassan YousefiEmail author
  • Fahimeh Zahedi


ZnO and ZnO:Al (aluminum-doped ZnO) thin films were grown on glass substrates at 480 °C by using a simple flexible spray pyrolysis method. The effects of Al doping on the structural, optical and electrical properties were investigated. X-ray diffraction (XRD) patterns showed successful growth of high-quality polycrystalline films on the substrates. The predominant orientation of the films was the (002) orientation. The microstructural parameters, such as the lattice parameters, the crystallite size (D), the microstrain (∈), and the dislocation density (d) were calculated and found to depend upon the composition. Adding Al to the ZnO crystal structure decreased the crystallite size and increased the residual stress in the thin films. All films were highly transparent in the visible region with an average transmittance of 85 %. Increasing the amount of the Al dopant increased the optical band gap from 3.26 to 3.34eV. A blue shift of the optical band gap from 400 nm to 380 nm with increasing Al doping percentage was observed in the PL spectrum. The spectrum in the UV range showed 1% Al emission with a bandwidth of 100 nm (between 350 and 450 nm). Doping improved the electrical conductivity of the ZnO thin films, and the lowest resistivity was found for the thin film with 1% Al doping. The I-V characteristics of the ZnO:Al thin films were measured in dark and under UV illumination. This study demonstrated that the 1% Al-doped ZnO thin film exhibited physical properties, allowing better integration in optoelectronic devices


Thin films Spray pyrolysis ZnO ZnO:Al UV Photodetector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Z. Alaie, S. M. Nejad, S. Safarzadeh and M. H. Yousefi, Int. J. Nanosci. Nanotechnol. 12, 119 (2016).Google Scholar
  2. [2]
    C. Klingshirn, Phys. Stat. Sol. B. 71, 547 (1975).CrossRefGoogle Scholar
  3. [3]
    R. T. Ghahrizjani and M. H. Yousefi, Superlattices Microstruct. 112, 10 (2017).CrossRefGoogle Scholar
  4. [4]
    E. Monroy, F. Calle and J. L. Pau, Appl. Phys. 88, 2081 (2000).CrossRefGoogle Scholar
  5. [5]
    U. Chowdhury, M. M. Wong and C. J. Collins, J. Cryst. Growth. 248, 552 (2003).CrossRefGoogle Scholar
  6. [6]
    P. Soraayie, M. H. Yousefi, H. Fallah and G-M. Parsanasab, Appl. Phys. A. 118, 519 (2014).CrossRefGoogle Scholar
  7. [7]
    A. Liu, J. Zhang and Q. Wang, Chem. Eng. Comm. 198, au]494 (2011).CrossRefGoogle Scholar
  8. [8]
    K. Liu, M. Sakurai and M. Aono, Sensors 10, 8604 (2010).CrossRefGoogle Scholar
  9. [9]
    K. W. Liu et al., Solid-State Electron. 51, 757 (2007).CrossRefGoogle Scholar
  10. [10]
    C. Y. Liu, B. P. Zhang and Z. W. Lu, J. Mater. Sci. Mater. Electron. 20, 197 (2009). -1018- Journal of the Korean Physical Society, Vol. 74, No. 11, June 2019CrossRefGoogle Scholar
  11. [11]
    T. Schuler and M. A. Aegerter, Thin Solid Films 351, au]125 (1999).CrossRefGoogle Scholar
  12. [12]
    H. Kim et al., Thin Solid Films. 377, 798 (2000).CrossRefGoogle Scholar
  13. [13]
    B. O. Lee and J. H. Park, Thin Solid Films 426, 94 (2003).CrossRefGoogle Scholar
  14. [14]
    B. O. Lee and J. H. Park, Mater. Sci. Eng. B. 106, 242 (2004).CrossRefGoogle Scholar
  15. [15]
    J. Lu et al., Mater. Lett. 57, 3311 (2003).CrossRefGoogle Scholar
  16. [16]
    D. Song, P. Widenborg, W. Chin and A. G. Aberle, Sol. Energy Mater. Sol. Cells 73, 1 (2002).CrossRefGoogle Scholar
  17. [17]
    J. Hu and R. G. Gordon, J. Appl. Phys. 71, 880 (1992).CrossRefGoogle Scholar
  18. [18]
    F. B. Dasgupta et al., Chem. Mater. 22, 4769 (2010).CrossRefGoogle Scholar
  19. [19]
    S. C. Ma and T. Y. Lee, J. Mater. Sci. Mater. Electron. 11, 305 (2000).CrossRefGoogle Scholar
  20. [20]
    D. B. Kim, H. Horwitz, J. S. Qadri and S. B. Chrisey, Thin Solid Films 420, 107 (2002).CrossRefGoogle Scholar
  21. [21]
    R. A. Ismail, A. Naimi and A. A. Ani, Semicond. Sci. Technol. 23, 75030 (2008).CrossRefGoogle Scholar
  22. [22]
    T. Prasada Rao and M. C. Santhosh Kumar, J. Alloys Compd. 506, 788 (2010).CrossRefGoogle Scholar
  23. [23]
    F. Zahedi, R. S. Dariani and S. M. Rozati, Bull. Mater. Sci. 37, 1 (2014).CrossRefGoogle Scholar
  24. [24]
    S. S. Shariffudin et al., ICSE2010 Proc. (Melaka, Malaysia, IEEE, June, 2010), p. 195.Google Scholar
  25. [25]
    O. Makuku, F. Mbaiwa and T. S. Sathiaraj, Ceram. Int. 6, 1 (2016).Google Scholar
  26. [26]
    M. Dutta, S. Mridha and D. Basak, Appl. Surf. Sci. 254, 2743 (2008).CrossRefGoogle Scholar
  27. [27]
    F. Zahedi, R. S. Dariani and S. M. Rozati, Mater. Sci. Semicond. Process 16, 245 (2013).CrossRefGoogle Scholar
  28. [28]
    S. T. Tan et al., J. Appl. Phys. 98, 13505 (2005).CrossRefGoogle Scholar
  29. [29]
    R. Tripathi, A. Kumar, C. Bharti and T. P. Sinha, Curr. Appl. Phys. 10, 676 (2010).CrossRefGoogle Scholar
  30. [30]
    P. L. Ping, F. Liang, W. W. Dong and W. X. Min, Chin. Phys. B 21, 047305 (2012).CrossRefGoogle Scholar
  31. [31]
    A. R. Kaul, O. Y. Gorbenko, A. N. Botev and L. I. Burova, Superlatt. Microstruct. 38, 272 (2005).CrossRefGoogle Scholar
  32. [32]
    A. El Manouni et al., Superlatt. Microstruct. 39, 185 (2006).CrossRefGoogle Scholar
  33. [33]
    A. F. Aktaruzzaman, G. L. Sharma and L. K. Malhotra, Thin Solid Films 198, 67 (1991).CrossRefGoogle Scholar
  34. [34]
    A. M. Suhail, E. K. Hassan, S. S. Ahmed and M. K. Alnoori, J. Electron Devices. 8, 268 (2010).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Sorour Jafari
    • 1
  • Mohammad Hassan Yousefi
    • 1
    Email author
  • Fahimeh Zahedi
    • 1
  1. 1.Nano Physics Center, Department of PhysicsMalek Ashtar University of TechnologyShahin Shahr EsfahanIran

Personalised recommendations