Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 11, pp 1004–1010 | Cite as

Theoretical Study of the Elastic and the Thermodynamic Properties of Re2C under High Pressure

  • Hui-Ru LeiEmail author
  • Li-Hong Zhang
  • Xu Li
  • Xiao-Zhen Gao
  • Jing Li
Article
  • 3 Downloads

Abstract

The structural properties of Re2C in anti-MoS2 and anti-ReB2 structures have been investigated by using the pseudopotential plane wave methods based on the density functional theory. The anti-ReB2 structure is found to be more stable than the anti-MoS2 structure. In particular, for the first time, we have studied the elastic properties of Re2C in the anti-ReB2 structure under high pressure. The ductile-brittle behavior and Vickers hardness for the anti-ReB2 structure are also been analyzed. In addition, the Debye temperature, heat capacity and thermal expansion coefficient are discussed by using the quasiharmonic Debye model method.

Keywords

Elastic properties Thermodynamic properties High pressure, Re2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are thankful for the support from the Scientific Research Start-Up Project of Shanxi Institute of Technology under Grant No. 201706002.

References

  1. [1]
    L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
  2. [2]
    K. Kobayashi, Jpn. J. Appl. Phys. 39, 4311 (2000).CrossRefGoogle Scholar
  3. [3]
    H. Li et al., Solid State Commun. 151, 602 (2011).CrossRefGoogle Scholar
  4. [4]
    R. Jeanloz, B.K. Godwal and C. Meade, Nature 349, 687 (1991).CrossRefGoogle Scholar
  5. [5]
    Y. K. Vohra, S.J. Duclos and A. L. Ruoff, Phys. Rev. B 36, 9790 (1987).CrossRefGoogle Scholar
  6. [6]
    J. Yang and F. Gao, Phys. B 407, 3527 (2012).CrossRefGoogle Scholar
  7. [7]
    E.A. Juarez-Arellano et al., Z. Kristallogr. 223, 492 (2008).Google Scholar
  8. [8]
    A. Friedrich, B. Winkler, E.A. Juarez-Arellano and L. Bayarjargal, Mater. 4, 1648 (2011).CrossRefGoogle Scholar
  9. [9]
    Z. Zhao et al., Cryst. Growth Des. 10, 5024 (2010).CrossRefGoogle Scholar
  10. [10]
    H. Ozisik, E. Deligoz, K. Colakoglu and G. Surucu, Phys. Status Solidi RRL 4, 347 (2010).CrossRefGoogle Scholar
  11. [11]
    N. Miao et al., Solid State Commun. 151, 1842 (2011).CrossRefGoogle Scholar
  12. [12]
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  13. [13]
    M. D. Segall et al., J. Phys.: Condens. Matter. 14, 2717 (2002).Google Scholar
  14. [14]
    B. G. Pfrommer, M. Cote, S.G. Louie and M. L. Cohen, J. Comp. Physiol. 131, 233 (1997).CrossRefGoogle Scholar
  15. [15]
    D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).CrossRefGoogle Scholar
  16. [16]
    J. H. Wang et al., Phys. Rev. B 52, 12627 (1995).CrossRefGoogle Scholar
  17. [17]
    T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85, 523 (1965).MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. A. Blanco, E. Francisco and V. Luana, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  19. [19]
    J. Wang and J. Sun, Phys. Status Solidi B 247, 921 (2010).Google Scholar
  20. [20]
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
  21. [21]
    E. A. Juarez-Arellano et al., J. Alloys Compd. 481, 577 (2009).CrossRefGoogle Scholar
  22. [22]
    A. Bouhemadou and R. Khenata, Phys. Lett. A 360, 339 (2006).CrossRefGoogle Scholar
  23. [23]
    L. Louail, D. Maouche, A. Roumili and F. A. Sahraoui, Mater. Lett. 58, 2975 (2004).CrossRefGoogle Scholar
  24. [24]
    H.R. Lei et al., Phys. B 458, 124 (2015).CrossRefGoogle Scholar
  25. [25]
    R. Hill, Proc. R. Soc. Lond. A 65, 349 (1952).Google Scholar
  26. [26]
    E. Schreiber, O.L. Anderson and N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).Google Scholar
  27. [27]
    S. F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  28. [28]
    I. N. Frantsevich, F.F. Voronov and S. A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators (Naukova Dumka, Kiev, 1983).Google Scholar
  29. [29]
    G. Steinle-Neumann, L. Stixrude and R. E. Cohen, Phys. Rev. B 60, 791 (1999).CrossRefGoogle Scholar
  30. [30]
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).zbMATHGoogle Scholar
  31. [31]
    H. Rached et al., Mater. Chem. Phys. 143, 93 (2013).CrossRefGoogle Scholar
  32. [32]
    Y. J. Tian, B. Xu and Z. S. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012).CrossRefGoogle Scholar
  33. [33]
    P. Ravindran, L. Fast, P.A. Korzhavyi and B. Johansson, J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
  34. [34]
    O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Hui-Ru Lei
    • 1
    Email author
  • Li-Hong Zhang
    • 1
  • Xu Li
    • 1
  • Xiao-Zhen Gao
    • 1
  • Jing Li
    • 1
  1. 1.Department of Basic Subjects TeachingShanxi Institute of TechnologyYangquanChina

Personalised recommendations