Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 95–99 | Cite as

Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes

  • Sunuk Choe
  • Donghun Lee
Article

Abstract

In the field of strain-based hybrid mechanical systems, understanding the local strain profile and realizing strong strain coupling is crucial. Here a theoretical investigation is conducted on hybrid devices consisting of diamond membranes with a high Q-factor and embedded nitrogen-vacancy defect centers. Simulation based on a three-dimensional finite element method reveals microscopic strain distribution in the membrane’s basis as well as in the defect’s basis. For strong strain coupling, we design diamond phononic crystal devices with a honeycomb lattice, enabling localized strain in a small mode volume and an enhanced Q-factor. The hybrid devices studied in this paper are promising candidates for various quantum applications, including strain-mediated long range spin-spin interaction, multi-mode optomechanics, and topological operations with exceptional points.

Keywords

Diamond NV center Diamond mechanical oscillator Strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Treutlein, C. Genes, K. Hammerer, M. Poggio and P. Rabl, Hybrid Mechanical Systems edited by M. Aspelmeyer, T. J. Kippenberg and F. Marquardt (Springer, Berlin, 2014).Google Scholar
  2. [2]
    D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong and A. C. B. Jayich, Journal of Optics 19, 033001 (2017).ADSCrossRefGoogle Scholar
  3. [3]
    A. Jockel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher and P. Treutlein, Nat. Nanotechnol. 10, 55 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    A. D. O’Connell et al., Nature 464, 697 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    I. Yeo et al., Nat. Nanotechnol. 9, 106 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    P. Ovartchaiyapong, K. W. Lee, B. A. Myers and A. C. B. Jayich, Nat. Commun. 5, 4429 (2014).ADSCrossRefGoogle Scholar
  7. [7]
    K. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze and A. C. B. Jayich, Phys. Rev. Appl. 6, 034005 (2016).ADSCrossRefGoogle Scholar
  8. [8]
    A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp and P. Maletinsky, Nat. Phys. 11, 820 (2015).CrossRefGoogle Scholar
  9. [9]
    D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart and H. Wang, Phys. Rev. Lett. 116, 143602 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria and A. C. B. Jayich, Appl. Phys. Lett. 101, 163505 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    M. J. Burek, Y. Chu Y, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin and M. Loncar, Nat. Commun. 5, 5718 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch and J. G. E. Harris, Nat. Commun. 6, 6232 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    H. Xu, D. Mason, L. Jiang and J. G. E. Harris, Nature 537, 80 (2016).ADSCrossRefGoogle Scholar
  14. [14]
    J. Chan et al., Nature 478, 89 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    Y. Tsaturyan, A. Barg, E. S. Polzik and A. Schliesser, Nat. Nanotechnol. 12, 776 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations