Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 90–94 | Cite as

Investigation of a Rayleigh-Like Instability During the Solid-State Dewetting of Single-Crystal Nickel and Palladium Films

  • Jaehoon Jeong
  • Kyeonggon Choi
  • Jongpil Ye
Article

Abstract

We report the results of an investigation of the Rayleigh-like instability during the solid-state dewetting of stripe patches patterned from 30-nm-thick single-crystal Ni(100) and Pd(100) films. The stability of the dewetting lines is shown to be highly anisotropic, leading to a strong dependence of the interspacing of the dewetted particles on the crystallographic orientations of the patches. The dewetting lines are most stable against the Rayleigh-like instability in the <011> or the <001> direction, resulting in maximum interparticle spacing. The stability of the <011> and that of the <001> lines are observed to increase under the condition in which oxygen adsorption on the film’s surface decreases and increases, respectively. The mean interspacing of the particles can be controlled by using artificial perturbations along the patch edges, and its dispersion is significantly narrowed in the direction in which the spontaneous wavelength is comparable to or greater than the characteristic length scale of a given artificial perturbation.

Keywords

Dewetting Nickel Palladium Single crystal Rayleigh-like instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. V. Thompson, Annual Rev. Mater. Res. 42, 399 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    E. Jiran and C. V. Thompson, J. Electron. Mater. 19, 1153 (1990).ADSCrossRefGoogle Scholar
  3. [3]
    E. Jiran and C. V. Thompson, Thin Solid Films 208, 23 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    J. P. Ye and C. V. Thompson, Appl. Phys. Lett. 97, 071904 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    H. Wong, P. W. Voorhees, M. J. Miksis and S. H. Davis, Acta Mater. 48, 1719 (2000).CrossRefGoogle Scholar
  6. [6]
    J. Ye and C. V. Thompson, Phys. Rev. B 82, 193408 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    W. Kan and H. Wong, J. Appl. Phys. 97, 043515 (2005).ADSCrossRefGoogle Scholar
  8. [8]
    F. A. Nichols and W. W. Mullins, Trans. Am. Instit. Mining 233, 1840 (1965).Google Scholar
  9. [9]
    G. H. Kim and C. V. Thompson, Acta Mater. 84, 190 (2015).CrossRefGoogle Scholar
  10. [10]
    J. Ye, Appl. Phys. Exp. 7, 085601 (2014).ADSCrossRefGoogle Scholar
  11. [11]
    R. Seemann, S. Herminghaus and K. Jacobs, J. Phys.-Conden. Matter 13, 4925 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).ADSCrossRefGoogle Scholar
  13. [13]
    G. Maidecchi, G. Gonella, R. P. Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H-L. Dai, M. Canepa and F. Bisio, ACS Nano 7, 5834 (2013).CrossRefGoogle Scholar
  14. [14]
    R. W. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh, R. A. Maniyara, D. Baker, F. J. Garcia de Abajo and V. Pruneri, ACS Photo. 3, 1194 (2016).CrossRefGoogle Scholar
  15. [15]
    J. D. Fowlkes, L. Kondic, J. Diez, Y. Wu and P. D. Rack, Nano Lett. 11, 2478 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    J. Lian, L. Wang, X. Sun, Q. Yu and R. C. Ewing, Nano Lett. 6, 1047 (2006).ADSCrossRefGoogle Scholar
  17. [17]
    J. Ye, Sci. Rep. 5, 9823 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    J. Ye and C. V. Thompson, Adv. Mater. 23, 1567 (2011).CrossRefGoogle Scholar
  19. [19]
    J. Ye, J. Vac. Sci. Tech. A 33, 060601 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations