Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 86–89 | Cite as

Mössbauer Studies of Z-Type Sr3Co2Fe24O41 Strontium Ferrite

  • Jung Tae Lim
  • In-Bo ShimEmail author
  • Chul Sung KimEmail author
  • Sung Baek Kim


Sr3Co2Fe24O41 plocrystalline sample was synthesized by using a polymerizable complex method. We investigated the crystallographic and the magnetic properties of sample by using X-ray diffractometer, vibrating sample magnetometer, and Mössbauer spectrometer. Based on the Rietveld refinement, the crystal structure of the sample was found to be single-phased and to be hexagonal with space group of P63/mmc. The hysteresis curves of sample were measured under 15 kOe at various temperatures ranging from 4.2 and 295 K. From the temperature dependence of the magnetization curves under 100 Oe at temperatures between 4.2 and 740 K, three temperature-dependent magnetic transitions were found to have occurred in the Sr3Co2Fe24O41 sample. The Mössbauer spectra of the samples were obtained at various temperatures ranging from 4.2 and 295 K.


Strontium hexaferrite Sr3Co2Fe24O41 Mössbauer spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).CrossRefGoogle Scholar
  2. [2]
    Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura and T. Kimura, Nature Mater. 9, 797 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    Z. Su, H. Chang, X. Wang, A. S. Sokolov, B. Hu, Y. Chen and V. G. Harris, Appl. Phys. Lett. 105, 062402 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    Z. Su, Q. Li, X. Wang, B. Hu, Z. Feng, Y. Chen and V. G. Harris, J. Appl. Phys. 117, 17E506 (2015).CrossRefGoogle Scholar
  5. [5]
    Z. W. Li, Y. P. Wu, G. Q. Lin and L. Chen, J. Magn. Magn. Mater. 310, 145 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    J. Lee et al., J. Appl. Phys. 109, 07E530 (2011).CrossRefGoogle Scholar
  7. [7]
    K. Ebnabbasi, C. Vittoria and A. Widom, Phys. Rev. B 86, 024430 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi and T. Kimura, Phys. Rev. Lett. 106, 087201 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    X. Wang, Z. Su, A. Sokolov, B. Hu, P. Andalib, Y. Chen and V. G. Harris, Appl. Phys. Lett. 105, 112408 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    J. Wu, Z. Shi, J. Xu, N. Li, Z. Zheng, H. Geng, Z. Xie and L. Zheng, Appl. Phys. Lett. 101, 122903 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    S. H. Chun et al., Phys. Rev. Lett. 108, 177201 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    T. Kikuchi et al., Mater. Res. Bull. 46, 1085 (2011).CrossRefGoogle Scholar
  13. [13]
    R. C. Pullar and A. K. Bhattacharya, Mater. Res. Bull. 36, 1531 (2001).CrossRefGoogle Scholar
  14. [14]
    Y. Takada et al., J. Jpn. Soc. Powder Powder Metall. 50, 618 (2003).CrossRefGoogle Scholar
  15. [15]
    Y. Takada et al., J. Appl. Phys. 100, 043904 (2006).ADSCrossRefGoogle Scholar
  16. [16]
    J. T. Lim, I-B. Shim, E. J. Hahn and C. S. Kim, AIP Adv. 7, 056108 (2017).ADSCrossRefGoogle Scholar
  17. [17]
    Z. W. Li et al., Phys. Rev. B 72, 104420 (2005).ADSCrossRefGoogle Scholar
  18. [18]
    J. T. Lim and C. S. Kim, J. Appl. Phys. 115, 17D706 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKookmin UniversitySeoulKorea
  2. 2.The College of Liberal ArtsKonyang UniversityNonsanKorea

Personalised recommendations