Journal of the Korean Physical Society

, Volume 73, Issue 6, pp 852–857 | Cite as

Physical Issues and Applications of Resistive Switching Phenomena

  • Yeon Soo Kim
  • Bae Ho ParkEmail author
Overview Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews


Resistive switching phenomena have been attracting much interest due to their various physical mechanisms and industrial potential as prospective candidates for next-generation non-volatile memories. Because diverse resistive switching behaviors have been observed in a wide variety of materials, various mechanisms and applications are proposed. In this paper, we appropriately categorize resistive switching behaviors based on their physical mechanisms, such as formation/rupture of conductive filament, Schottky barrier modulation, valence changing, and conductive bridging. Memristive behaviors of resistive switching materials are also addressed because they have potential for neuromorphic devices. In addition, we introduce several problems raised during materialization of cross point array of resistive switching memories and suggested solutions.


Resistive switching Next-generation non-volatile memory Physical mechanism Memristive behavior Cross point array 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2013R1A3A2042120), Nano Material Technology Development Program through NRF funded by the MSIP (No. 2016M3A7B4909668), and Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (18ZB1800, Development of Neuromorphic Hardware by using High Performance Memristor Device based on Ultra-thin Film Structure).


  1. [1]
    J. Meena, S. Sze, U. Chand and T-Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014).CrossRefGoogle Scholar
  2. [2]
    T. W. Hickmott, J. Appl. Phys. 33, 2669 (1962).ADSCrossRefGoogle Scholar
  3. [3]
    J. Simmons and R. Verderber, Proc. Royal Soc. A 301, 77 (1967).ADSCrossRefGoogle Scholar
  4. [4]
    J. F. Gibbons and W. E. Beadle, Solid-State Electronics 7, 785 (1964).ADSCrossRefGoogle Scholar
  5. [5]
    W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6, 106 (1965).ADSCrossRefGoogle Scholar
  6. [6]
    J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal and N. A. Pertsev, Appl. Phys. Lett. 83, 4595 (2003).ADSCrossRefGoogle Scholar
  7. [7]
    A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, Appl. Phys. Lett. 83, 957 (2003).ADSCrossRefGoogle Scholar
  8. [8]
    A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).ADSCrossRefGoogle Scholar
  9. [9]
    S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim and B. H. Park, Appl. Phys. Lett. 86, 093509 (2005).ADSCrossRefGoogle Scholar
  10. [10]
    M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi and N. Awaya, Appl. Phys. Lett. 89, 223509 (2006).ADSCrossRefGoogle Scholar
  11. [11]
    S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi and B. H. Park, Appl. Phys. Lett. 85, 5655 (2004).ADSCrossRefGoogle Scholar
  12. [12]
    G-S. Park, X-S. Li, D. C. Kim, R-J. Jung, M-J. Lee and S. Seo, Appl. Phys. Lett. 91, 222103 (2007).ADSCrossRefGoogle Scholar
  13. [13]
    D-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X-S. Li, G-S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-I. Chung, J. T. Moon and B. I. Ryu, Appl. Phys. Lett. 88, 232106 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    I. G. Baek, M. S. Lee, S. Sco, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung and J. T. Moon, IEDM Technical Digest. IEEE International Electron Devices Meeting (2004).Google Scholar
  16. [16]
    S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee, S. Seo, B. Kahng and T. W. Noh, Appl. Phys. Lett. 93, 212105 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    S. B. Lee, S. C. Chae, S. H. Chang and T. W. Noh, Appl. Phys. Lett. 94, 173504 (2009).ADSCrossRefGoogle Scholar
  18. [18]
    S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D-W. Kim, C. U. Jung, S. Seo, M-J. Lee and T. W. Noh, Adv. Mater. 20, 1154 (2008).CrossRefGoogle Scholar
  19. [19]
    Y. S. Kim, J. S. Kim, J. S. Choi, I. R. Hwang, S. H. Hong, S. O. Kang and B. H. Park, Appl. Phys. Lett. 98, 192104 (2011).ADSCrossRefGoogle Scholar
  20. [20]
    H. Fowler and J. Devaney, IEEE Trans. Dielectr. Electr. Insul. 10, 73 (2003).CrossRefGoogle Scholar
  21. [21]
    K. M. Kim and C. S. Hwang, Appl. Phys. Lett. 94, 122109 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck and S. J. Wind, Appl. Phys. Lett. 78, 3738 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, EH. Lee, W. Kim, Y. Park, I-K. Yoo and H. Hwang, IEDM Technical Digest. IEEE International Electron Devices Meeting (2005).Google Scholar
  24. [24]
    S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen and A. J. Jacobson, Appl. Phys. Lett. 85, 317 (2004).ADSCrossRefGoogle Scholar
  25. [25]
    J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).CrossRefGoogle Scholar
  26. [26]
    K. Szot, W. Speier, G. Bihlmayer and R. Waser, Nat. Mater. 5, 312 (2006).ADSCrossRefGoogle Scholar
  27. [27]
    K. Terabe, T. Hasegawa and T. Nakayama, Nature 433, 47 (2005).ADSCrossRefGoogle Scholar
  28. [28]
    S. Wu, X. Luo, S. Turner, H. Peng, W. Lin, J. Ding, A. David, B. Wang, G. van Tendeloo, J. Wang and T. Wu, Phys. Rev. X 3, 041027 (2013).Google Scholar
  29. [29]
    M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).CrossRefGoogle Scholar
  30. [30]
    R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
  31. [31]
    T. Mikolajick, M. Salinga, M. Kund and T. Kever, Adv. Eng. Mater. 11, 235 (2009).CrossRefGoogle Scholar
  32. [32]
    S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann and R. Waser, Adv. Funct. Mater. 21, 4487 (2011).CrossRefGoogle Scholar
  33. [33]
    S. Menzel, S. Tappertzhofen, R. Waser and I. Valov, Phys. Chem. Chem. Phys. 15, 6945 (2013).CrossRefGoogle Scholar
  34. [34]
    S. B. Lee, J. S. Lee, S. H. Chang, H. K. Yoo, B. S. Kang, B. Kahng, M. J. Lee, C. J. Kim and T. W. Noh, Appl. Phys. Lett. 98, 033502 (2011).ADSCrossRefGoogle Scholar
  35. [35]
    W. Shen, R. Dittmann and R. Waser, J. Appl. Phys. 107, 094506 (2010).ADSCrossRefGoogle Scholar
  36. [36]
    D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, Nature 453, 80 (2008).ADSCrossRefGoogle Scholar
  37. [37]
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).ADSCrossRefGoogle Scholar
  38. [38]
    L. O. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976).MathSciNetCrossRefGoogle Scholar
  39. [39]
    J. J. Yang, D. B. Strukov and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).ADSCrossRefGoogle Scholar
  40. [40]
    I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz and R. Waser, Nat. Commun. 4, 2228 (2013).CrossRefGoogle Scholar
  41. [41]
    S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and W. Lu, Nano Lett. 10, 1297 (2010).ADSCrossRefGoogle Scholar
  42. [42]
    H. Okano, T. Hirano and E. Balaban, Proc. Natl. Acad. Sci. U. S. A. 97, 12403 (2000).ADSCrossRefGoogle Scholar
  43. [43]
    D. Kuzum, R. G. D. Jeyasingh, B. Lee and H. S. P. Wong, Nano Lett. 12, 2179 (2012).ADSCrossRefGoogle Scholar
  44. [44]
    T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski and M. Aono, Nat. Mater. 10, 591 (2011).ADSCrossRefGoogle Scholar
  45. [45]
    Y. V. Pershin and M. D. Ventra, Neural Netw. 23, 881 (2010).CrossRefGoogle Scholar
  46. [46]
    A. Sawa, Mater. Today 11, 28 (2008).Google Scholar
  47. [47]
    J. Liang and H. S. P. Wong, IEEE Trans. Electron Dev. 57, 2531 (2010).ADSCrossRefGoogle Scholar
  48. [48]
    E. Linn, R. Rosezin, C. Kügeler and R. Waser, Nat. Mater. 9, 403 (2010).ADSCrossRefGoogle Scholar
  49. [49]
    F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux and D. J. Wouters, Solid-State Electronics 58, 42 (2011).ADSCrossRefGoogle Scholar
  50. [50]
    M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Baek, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon and B. H. Park, Adv. Mater. 19, 73 (2007).ADSCrossRefGoogle Scholar
  51. [51]
    M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim and B. H. Park, Adv. Mater. 19, 3919 (2007).CrossRefGoogle Scholar
  52. [52]
    H. S. Yoon, I. G. Baek, J. Zhao, H. Sim, M. Y. Park, H. Lee, G. H. Oh, J. C. Shin and I. S. Y. A. U-I. Chung, Symposium on VLSI Technology Digest of Technical Papers 1 (2009).Google Scholar
  53. [53]
    X. A. Tran, W. G. Zhu, B. Gao, J. F. Kang, W. J. Liu, Z. Fang, Z. R. Wang, Y. C. Yeo, B. Y. Nguyen, M. F. Li and H. Y. Yu, IEEE Electron Device Lett. 33, 585 (2012).ADSCrossRefGoogle Scholar
  54. [54]
    M-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y-B. Kim, C. J. Kim, D. H. Seo, S. Seo, U-I. Chung, I-K. Yoo and K. Kim, Nat. Mater. 10, 625 (2011).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Division of Quantum Phases & Devices, Department of PhysicsKonkuk UniversitySeoulKorea

Personalised recommendations