Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 6, pp 793–804 | Cite as

Nanoscale Strain Imaging using Coherent X-ray Light Sources

  • Dongjin Kim
  • Sungwook Choi
  • Kyuseok Yun
  • Jinback Kang
  • Jaeseung Kim
  • Sungwon Kim
  • Hyunjung Kim
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

Coherence properties available from the advanced X-ray synchrotrons and X-ray Free Electron Laser sources bring the opportunities to get new information of the dynamics and local structures non-destructively. Here we review recent progress of the coherent X-ray diffraction imaging technique for measuring internal strain distribution of the nanomaterial systems. We introduce the general coherence properties of the sources and show the fundamental principle and technical aspects of the technique. Some examples of the applications are shown for various nanostructures, grains in polycrystalline films, and semiconducting devices even with in situ and operando conditions. We discuss the future development of the technique in terms of the understanding and control of the strains, which are very crucial in nanomaterial design and applications.

Keywords

X-ray diffraction Synchrotron X-ray Free Electron Laser Phase retrieval Nanoscale materials Coherent X-rays 

Notes

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF-2014R1A2A1A10052454 2015R1A5A1009962, 2016R1A6B2A02005468, and 2017K1A3A7A09016379).

References

  1. [1]
    D. H. Bilderback, P. Elleaume and E. Weckert, J. Phys. B: At. Mol. Opt. Phys. 38, S773 (2005).Google Scholar
  2. [2]
    G. Grübel, A. Madsen and A. Robert, Soft-Matter Characterization: X-ray photon correlation spectroscopy (Springer-Verlag, 2008).Google Scholar
  3. [3]
    H. Kim et al., Phys. Rev. Lett. 90, 068302 (2003).ADSGoogle Scholar
  4. [4]
    J. Miao et al., Nature 400, 342 (1999).ADSGoogle Scholar
  5. [5]
    M. Pfeifer et al., Nature 442, 63 (2006).ADSGoogle Scholar
  6. [6]
    S. Eisebitt et al., Nature 432, 885 (2004).ADSGoogle Scholar
  7. [7]
    J. Carnis et al., Scientific Reports 4, 6017 (2014).Google Scholar
  8. [8]
    F. Lehmkühler et al., Scientific Reports 5, 17193 (2015).ADSGoogle Scholar
  9. [9]
    M. M. Seibert et al., Nature 470, 78 (2011).ADSGoogle Scholar
  10. [10]
    T. Gorkhover et al., Nat. Photonics 12, 150 (2018).ADSGoogle Scholar
  11. [11]
    P. Emma et al., Nat. Photonics 4, 641 (2010).ADSGoogle Scholar
  12. [12]
    C. Gutt et al., Phys. Rev. Lett. 108, 024801 (2012).ADSGoogle Scholar
  13. [13]
    J. Carnis, Coherent X-ray scattering study of dynamics and nanostructures, Ph. D dissertation, College of Science, Sogang University, Seoul, Korea, 2015.Google Scholar
  14. [14]
    J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics (Wiley, 2011).Google Scholar
  15. [15]
    A. Singer et al., Phys. Rev. Lett. 101, 254801 (2008).ADSGoogle Scholar
  16. [16]
    A. Singer et al., Optics Express 20, 17480 (2012).ADSGoogle Scholar
  17. [17]
    I. A. Vartanyants et al., Phys. Rev. Lett. 107, 144801 (2011).ADSGoogle Scholar
  18. [18]
    M. Sutton et al., Nature (London) 352, 608 (1991).ADSGoogle Scholar
  19. [19]
    S. Lee et al., Optics Express 21, 24647 (2013).ADSGoogle Scholar
  20. [20]
    S. Lee et al., Optics Express 20, 9790 (2012).ADSGoogle Scholar
  21. [21]
    F. Lehmkühler et al., Scientific Reports 4, 5234 (2014).Google Scholar
  22. [22]
    K. Amane et al., Scientific Reports 8, 831 (2018).ADSGoogle Scholar
  23. [23]
    K. Yun et al., (unpublished).Google Scholar
  24. [24]
    J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).Google Scholar
  25. [25]
    D. Sayre, Acta Cryst. 5, 843 (1952).Google Scholar
  26. [26]
    A. P. Mancuso and G. J. Williams, Nat. Photonics. 6, 574 (2012).ADSGoogle Scholar
  27. [27]
    J. R. Fienup, Appl. Opt. 21, 2758 (1982).ADSGoogle Scholar
  28. [28]
    W. Cha et al., New J. Phys. 12, 035022 (2010).Google Scholar
  29. [29]
    R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).Google Scholar
  30. [30]
    J. R. Fienup, Opt. Lett. 3, 27 (1978).ADSGoogle Scholar
  31. [31]
    J. Miao et al., Phys. Rev. Lett. 89, 088303 (2002).ADSGoogle Scholar
  32. [32]
    R. Bates, Optik 61, 247 (1982).Google Scholar
  33. [33]
    I. K. Robinson et al., Phys. Rev. Lett. 87, 195505 (2001).ADSGoogle Scholar
  34. [34]
    G. J. Williams et al., Phys. Rev. Lett. 90, 175501 (2003).ADSGoogle Scholar
  35. [35]
    I. K. Robinson and R. Harder, Nat. Mater. 8, 291 (2009).ADSGoogle Scholar
  36. [36]
    W. Cha et al., Nat. Mater. 12, 729 (2013).ADSGoogle Scholar
  37. [37]
    R. Harder et al., Phys. Rev. B 76, 115425 (2007).ADSGoogle Scholar
  38. [38]
    H. N. Chapman et al., J. Opt. Soc. Am. A 23, 1179 (2006).ADSGoogle Scholar
  39. [39]
    M. Watari et al., Nat. Mater. 10, 862 (2011).ADSGoogle Scholar
  40. [40]
    M. C. Newton et al., Nat. Mater. 9, 120 (2010).ADSGoogle Scholar
  41. [41]
    J. N. Clark et al., Nat. Commun. 3, 993 (2012).Google Scholar
  42. [42]
    V. Favre-Nicolin et al., New J. Phys. 12, 035013 (2010).Google Scholar
  43. [43]
    S. Labat et al., ACS Nano 9, 9210 (2015).Google Scholar
  44. [44]
    A. Davtyan et al., New J. Phys. 18, 063021 (2016).Google Scholar
  45. [45]
    A. Davtyan et al., J. Appl. Cryst. 50, 673 (2017).Google Scholar
  46. [46]
    A. A. Minkevich et al., Phys. Rev. B 76, 104106 (2007).ADSGoogle Scholar
  47. [47]
    G. Xiong et al., Appl. Phys. Lett, 99, 114103 (2011).ADSGoogle Scholar
  48. [48]
    G. Xiong et al., Adv. Mater. 26, 7747 (2014).Google Scholar
  49. [49]
    A. Ulvestad et al., Nano Lett. 15, 4066 (2015).ADSGoogle Scholar
  50. [50]
    X. Huang et al., Nano Lett. 15, 7644 (2015).ADSGoogle Scholar
  51. [51]
    N. Vaxelaire et al., Acta Materialia 78, 46 (2014).Google Scholar
  52. [52]
    A. Yau et al., Science 356, 739 (2017).ADSGoogle Scholar
  53. [53]
    A. Yau et al., ACS Nano 11, 10945 (2017).Google Scholar
  54. [54]
    A. Ulvestad et al., Nat. Commun. 6, 10092 (2015).Google Scholar
  55. [55]
    A. Ulvestad et al., Nat. Mat. 16, 565 (2017).Google Scholar
  56. [56]
    D. Kim et al., Nat. Commun. 9, 3422 (2018).Google Scholar
  57. [57]
    W. Cha et al., Adv. Funct. Mater. 27, 1700331 (2017).Google Scholar
  58. [58]
    Y. K. Chen-Wiegart et al., Nanoscale 9, 5686 (2017).Google Scholar
  59. [59]
    A. Ulvestad et al., Nano Lett. 14, 5123 (2014).ADSGoogle Scholar
  60. [60]
    A. Ulvestad et al., Phys. Chem. Chem. Phys. 17, 10551 (2015).Google Scholar
  61. [61]
    A. Ulvestad et al., Science 348, 1344 (2015).ADSGoogle Scholar
  62. [62]
    J. N. Clark et al., Science 341, 56 (2013).ADSGoogle Scholar
  63. [63]
    G. V. Hartland, J. Chem. Phys. 116, 8048 (2002).ADSGoogle Scholar
  64. [64]
    K. Ichiyanagi et al., Phys. Rev. B 84, 024110 (2011).ADSGoogle Scholar
  65. [65]
    J. N. Clark et al., PNAS 112, 7444 (2015).ADSGoogle Scholar
  66. [66]
    M. J. Cherukara et al., Nano Lett. 17, 1102 (2017).ADSGoogle Scholar
  67. [67]
    M. J. Cherukara et al., Nano Lett. 17, 7696 (2017).ADSGoogle Scholar
  68. [68]
    A. Ulvestad et al., Scientific Reports 7, 9823 (2017).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Dongjin Kim
    • 1
  • Sungwook Choi
    • 1
  • Kyuseok Yun
    • 1
  • Jinback Kang
    • 1
  • Jaeseung Kim
    • 1
  • Sungwon Kim
    • 1
  • Hyunjung Kim
    • 1
  1. 1.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations