Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 65–85 | Cite as

Causality in Plasma Electrodynamics

  • Hee J. Lee
Article
  • 6 Downloads

Abstract

Causality in electrodynamics is reviewed in regard to the interrelations among the causal requirement, the analyticity of the dielectric permittivity, and the Kramers-Kronig relations. We show that the collisionless damping (Landau damping) of a plasma wave can be formally derived from the causal requirement imposed on the susceptibility of a Vlasov-Poisson plasma. Here, the causal requirement is that the susceptibility χ(t) be nil for t < 0, which means the future electric field has nothing to do with the response effected in the medium at the present time. We show that this single requirement provides the analyticity of χ(ω) in the upper half-ω plane, the Kramers- Kronig relations, and Landau damping. Cerenkov emission which is the inverse process of Landau damping is also discussed in the light of causality. We present an easy way to calculate the electric fluctuation in a magnetized plasma by regarding a plasma as an assembly of non-interacting cold beams. We investigate the case of a separable distribution function \(g(x,t,v) = \tilde g(v)f(x - {v_0}t)\), which corresponds to a special type of Benstein-Greene-Kruskal wave and a slight generalization of Van Kampen’s distribution function. We review Van Kampen’s theory of a Vlasov-Poisson system, which corresponds to the Sturm-Liouville theory of differential equations, and show that the Vlasov- Poisson equations in this separable case are trivially solved in terms of the separation constant. It is philosophically interesting that the collisionless damping of a plasma wave can be attributed to causality, which defines the direction of time and is operative in general electrodynamics.

Keywords

Causality Kramers-Kronig relations Landau damping Electric fluctuation Cerenkov emission Van Kampen wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Clarendon Press, Oxford, 1937).MATHGoogle Scholar
  2. [2]
    G. Arfken, Mathematical methods for physicists (Academic Press, Orlando, 1985).MATHGoogle Scholar
  3. [3]
    Y. K. Lim and H. J. Lee, Open Plasma Phys. J. 5, 36 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    H. J. Lee, Open Plasma Phys. J. 6, 30 (2013).ADSCrossRefGoogle Scholar
  5. [5]
    H. J. Lee and M. Y. Song, J. of Modern Phys. 4, 555 (2013).ADSCrossRefGoogle Scholar
  6. [6]
    Y. D. Jung and H. J. Lee, New Physics: Sae Mulli 63, 438 (2013).Google Scholar
  7. [7]
    L. Landau, J. Phys. 10, 25 (1946).Google Scholar
  8. [8]
    H. J. Lee, J. Korean Phys. Soc. 66, 1167 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    N. G. Van Kampen, Physica 21, 949 (1955).ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).ADSCrossRefGoogle Scholar
  11. [11]
    H. J. Lee, J. Korean Phys. Soc. 69, 1191 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K. M. Case, Ann. Phys. 7, 349 (1959).ADSCrossRefGoogle Scholar
  14. [14]
    I. B. Bernstein, J. M. Greene and M. D. Kruskal, Phys. Rev. 108, 546 (1957).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Bekefi, Radiation Processes in Plasmas (John Wiley, New York, 1966).Google Scholar
  16. [16]
    N. A. Krall and A. W. Trivelpiece, Pinciples of Plasma Physics (McGraw-Hill, New York, 1973).Google Scholar
  17. [17]
    A. F. Alexandrov, L. S. Bogdankevich and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Heidelberg, 1984).CrossRefGoogle Scholar
  18. [18]
    H. B. Dwight, Tables of Integrals and Other Mathematical Data (Macmillan Co., New York, 1967).MATHGoogle Scholar
  19. [19]
    P. A. Sturrock, Plasma Physics (Cambridge University Press, New York, 1994).CrossRefGoogle Scholar
  20. [20]
    N. G. Van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics (John Wiley, New York, 1967)MATHGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversitySeoulKorea

Personalised recommendations