Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1904–1907 | Cite as

New DOI Detector Using a Bottom and Side Readouts with a Cross-Arranged Scintillator Array for Positron Emission Tomography

  • Seung-Jae Lee
  • Cheol-Ha BaekEmail author
Article
  • 10 Downloads

Abstract

We designed a depth-encoding positron emission tomography (PET) detector by using a bottom and side readout method with a cross-arranged scintillator array. To evaluate the characteristics of the novel detector module, we used the DETECT2000 simulation tool to perform the optical photon transport in the crystal array. The detector module consists of an M (column) × N (row) cross-arranged crystal array composed of M/3 sub-arrays consisting of N × 3 crystals. The second column of the sub-array is arranged perpendicular to the first and the third columns. The crystal is optically coupled to the crystals of the other columns; however, the surfaces between the crystals in the same column are treated as reflectors. A 6 × 5 crystal array consisting of two sub-arrays was considered for proof of concept. The two multi-pixel photon counter (MPPC) arrays are coupled to the bottom and one side of the crystal array, respectively. The x-y position is determined by the bottom MPPC array, and the side MPPC array gives depth information. All pixels in the x-y plane and the z direction were clearly distinguished.

Keywords

Depth of Interaction Bottom and side readout Cross-arranged scintillator array DETECT2000 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Peng and C. S. Levin, Curr. Pharm. Biotechnol. 11, 555 (2010).CrossRefGoogle Scholar
  2. [2]
    R. S. Miyaoka, T. K. Lewellen, H. Yu and D. L. Mc-Daniel, IEEE Trans. Nucl. Sci. 45, 1069 (1998).ADSCrossRefGoogle Scholar
  3. [3]
    S. R. Cherry, J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine, 3rd ed. (Saunders, Philadelphia, 2003).Google Scholar
  4. [4]
    W. W. Moses, S. E. Derenzo, C. L. Melcher and R. A. Manente, IEEE Trans. Nucl. Sci. 42, 1085 (1995).ADSCrossRefGoogle Scholar
  5. [5]
    K. C. Burr, A. Ivan, D. E. Castleberry, J. W. LeBlanc, K. S. Shah and R. Farrell, IEEE Trans. Nucl. Sci. 51, 1791 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    Y. Shao, X. Sun, K. A. Lan, C. Bircher, K. Lou and Z. Deng, Phys. Med. Bio. 59, 1223 (2014).CrossRefGoogle Scholar
  7. [7]
    A. Mohammadi, E. Yoshida, F. Nishikido, M. Nitta, K. Shimizu, T. Sakai and T. Yamaya, Phys. Med. Bio. 63, 025019–1 (2018).CrossRefGoogle Scholar
  8. [8]
    M. Ito, S. J. Hong and J. S. Lee, Biomed. Eng. Lett. 1, 70 (2011).CrossRefGoogle Scholar
  9. [9]
    Y. Yang, J. Qi, Y. Wu, S. St. James, R. Farrell, P. A. Dokhale, K. S. Shah and S. R. Cherry, Phys. Med. Bio. 54, 433 (2009).CrossRefGoogle Scholar
  10. [10]
    F. Cayouette, D. Laurendeau and C. Moisan, Proc. SPIE 4833, 69 (2003).ADSCrossRefGoogle Scholar
  11. [11]

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Radiological ScienceDongseo UniversityBusanKorea
  2. 2.Center for Radiological Environment & Health ScienceDongseo UniversityBusanKorea
  3. 3.Department of Radiological ScienceKangwon National UniversitySamcheokKorea

Personalised recommendations