Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1879–1883 | Cite as

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Seonghoon Jeong
  • Hyunsoo Kim
  • Sung-Nam Lee
Article
  • 13 Downloads

Abstract

We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of 2.41 × 1016 and the other with a density of 3.91×1016 cm −3. However, after maximum electrical stress, three sets of deep-level states, with respective densities of 1.82×1016, 2.32×1016 cm −3, 5.31×1016 cm −3 were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Keywords

Ultraviolet Light-emitting diodes Degradation Deep-level states Space-charge-limited conduction Leakage current Reliability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Phys. Stat. Sol. (a) 206, 1176 (2009).ADSCrossRefGoogle Scholar
  2. [2]
    U. Kasten, D. Beyersmann, J. Dahm-Daphi and A. Harwig, Mutat. Res. 336, 143 (1995).CrossRefGoogle Scholar
  3. [3]
    H. Kudo, M. Sawai, Y. Suzuki, X. Wang, T. Gessei, D. Takahasho, T. Arakawa and K. Mitsubayashi, Sens. Actuator B-Chem. 147, 676 (2010).CrossRefGoogle Scholar
  4. [4]
    J. Close, J. Ip and K. H. Lam, Renew. Energy 31, 1657 (2006).CrossRefGoogle Scholar
  5. [5]
    J. L. Shie, C. H. Lee, C. S. Chiou, C. T. Chang, C. C. Chang and C. Y. Chang, J. Hazard. Mater. 155, 164 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    M. Menegehini, L. R. Trevisanello, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 323 (2008).CrossRefGoogle Scholar
  7. [7]
    M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 57, 108 (2010).ADSCrossRefGoogle Scholar
  8. [8]
    M. A. Khan, Phys. Stat. Sol. (a) 203, 1764 (2006).ADSCrossRefGoogle Scholar
  9. [9]
    L. X. Zhao, E. J. Thrush, C. J. Humphreys and W. A. Phillips, J. Appl. Phys. 103, 024501 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    E. Jung, M. Kim and H. Kim, IEEE Trans. Electron. Dev. 60, 186 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    E. Jung, J. H. Ryou, C. H. Hong and H. Kim, J. Electrochem. Soc. 158, H132 (2011).CrossRefGoogle Scholar
  12. [12]
    G. Meneghesso, S. Levada, R. Pierobon, F. Rampazzo, E. Zanoni, A. Cavallini, A. Castaldini, G. Scamarcio, S. Du and I. Eliasevich, in IEDM Tech. Dig. 103 (2002).Google Scholar
  13. [13]
    R. Mueller-Mach, G. Mueller, M. Krames and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).ADSCrossRefGoogle Scholar
  14. [14]
    M. Meneghini, M. la Grassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso and E. Zanoni, Appl. Phys. Lett. 104, 113505 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).ADSCrossRefGoogle Scholar
  16. [16]
    R. Nana, P. Gnanachchelvi, M. A. Awaah, M. H. Gowda, A. M. Kamto, Y. Wang, M. Park and K. Das, Phys. Stat. Sol. (a) 207, 1489 (2010).ADSCrossRefGoogle Scholar
  17. [17]
    E. Jung, S. Jeong, J. H. Ryou and H. Kim, J. Nanosci. Nanotechnol. 17, 7339 (2017).CrossRefGoogle Scholar
  18. [18]
    L. R. Trevisanello, M. Meneghini, G. Mura, C. Sanna, S. Buso, G. Spiazzi, M. Vanzi, G. Meneghesso and E. Zanoni, Proc. SPIE 6669, 666913 (2007).CrossRefGoogle Scholar
  19. [19]
    L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 304 (2008).CrossRefGoogle Scholar
  20. [20]
    M. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 53, 2981 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    W. Shockley Bell Syst. Tech. J. 28, 435 (1949).CrossRefGoogle Scholar
  22. [22]
    H. Kim, J. Cho, Y. Park and T. Y. Seong, Appl. Phys. Lett. 92, 092115 (2008).ADSCrossRefGoogle Scholar
  23. [23]
    D. Zhu, A. N. Noemaun, J. Kim, E. F. Schubert, M. H. Crawford and D. D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).ADSCrossRefGoogle Scholar
  24. [24]
    M. A. Lambert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).Google Scholar
  25. [25]
    A. Rose, Phys. Rev. 97, 1538 (1955).ADSCrossRefGoogle Scholar
  26. [26]
    J. Osaka, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, Appl. Phys. Lett. 87, 222112 (2005).ADSCrossRefGoogle Scholar
  27. [27]
    A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. Denbaars, Appl. Phys. Lett. 77, 1499 (2000).ADSCrossRefGoogle Scholar
  28. [28]
    T. Mattila and R. M. Nieminen, Phys. Rev. B 54, 16676 (1996).ADSCrossRefGoogle Scholar
  29. [29]
    A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son and Y. Park, Appl. Phys. Lett. 98, 023503 (2011).ADSCrossRefGoogle Scholar
  30. [30]
    V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, Appl. Phys. Lett. 72, 1365 (1998).ADSCrossRefGoogle Scholar
  31. [31]
    J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen, Appl. Phys. Lett. 82, 40 (2003).ADSCrossRefGoogle Scholar
  32. [32]
    R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen, Appl. Phys. Lett. 82, 3457 (2003).ADSCrossRefGoogle Scholar
  33. [33]
    M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory and S. Porewski, Phys. Rev. B 63, 125203 (2001).ADSCrossRefGoogle Scholar
  34. [34]
    Q. Yan, A. Janotti, M. Scheffler and C. G. van de Walle, Appl. Phys. Lett. 100, 142110 (2012).ADSCrossRefGoogle Scholar
  35. [35]
    L. Lymperakis, J. Neugebauer, M. Albrecht, T. Remmele and H. P. Strunk, Phys. Rev. Lett. 93, 196401 (2004).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research CenterChonbuk National UniversityJeonjuKorea
  2. 2.Department of Nano-Optical EngineeringKorea Polytechnic UniversitySiheungKorea

Personalised recommendations