Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1760–1763 | Cite as

Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device

  • S. E. MoonEmail author
  • J. Kim
  • S.-M. Lee
  • J. Lee
  • J. P. Im
  • J. H. Kim
  • S. Y. Im
  • E. B. Jeon
  • B. Kwon
  • H. Kim
  • J.-S. Kim
Article
  • 37 Downloads

Abstract

To attain power generation with body heat, the thermal resistance matched design of the thermoelectric generator was the principal factor which was not critical in the case of thermoelectric generator for the waste heat generation. The dimension of thermoelectric legs and the number of thermoelectric leg-pairs dependent output power performances of the thermoelectric generator on the human wrist condition was simulated using 1-dimensional approximated heat flow equations with the temperature dependent material coefficients of the constituent materials and the dimension of the substrate. With the optimum thermoelectric generator design, thermoelectric generator modules were fabricated by using newly developed fabrication processes, which is mass production possible. The electrical properties and the output power characteristics of the fabricated thermoelectric modules were characterized by using a home-made test set-up. The output voltage of the designed thermoelectric generator were a few tens of millivolts and its output power was several hundreds of microwatts under the conditions at the human wrist. The measured output voltage and power of the fabricated thermoelectric generator were slightly lower than those of the designed thermoelectric generator due to several reasons.

Keywords

Thermoelectric Bi2Te3 Generator Thermal resistance Body heat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J-H. Choi, J. Park, H. D. Park and O-G. Min, ETRI J. 39, 202 (2017).CrossRefGoogle Scholar
  2. [2]
    M. T. Dunhama, M. T. Barako, S. LeBlanc, M. Asheghi, B. Chen and K. E. Goodson, Energy 93, 2006 (2015).CrossRefGoogle Scholar
  3. [3]
    S. Song, K. H. Chang, C. Yoon and J-M. Chung, ETRI J. 40, 7 (2018).CrossRefGoogle Scholar
  4. [4]
    J. A. Paradiso and T. Starner, IEEE Pervasice Comput. 4, 16 (2005).Google Scholar
  5. [5]
    S. Roundy and P. K. Wright, Smart Mater. Struct. 13, 1131 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    A. R. M. Siddique, R. Rabari, S. Mahmud and B.V. Heyst, Energy 115, 1081 (2018).CrossRefGoogle Scholar
  7. [7]
    J. Kim, J. Korean Phys. Soc. 50, 168 (2007).Google Scholar
  8. [8]
    S. E. Moon, S. Q. Lee, S-K. Lee, Y-G. Lee, Y. S. Yang, K.-H. Park et al., ETRI J. 31, 688 (2009).CrossRefGoogle Scholar
  9. [9]
    J. Kim, S-J. Kim, J. Y. Kwon, W. Choi, H. J. Kim, T. Kim et al., J. Korean Phys. Soc. 68, 1472 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    D. Champier, Energy Conversion and Management 140, 167 (2017).CrossRefGoogle Scholar
  11. [11]
    M-K. Kim, M-S. Kim, S. Lee, C. Kim and Y-J. Kim, Smart Mater. Struct. 23, 105002–1 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    S. J. Kim, H. Choi, Y. Kim, J. H. We, J. S. Shin, H. E. Lee et al., Nano Energy 31, 258 (2017).CrossRefGoogle Scholar
  13. [13]
    J-H. Bahk, H. Fang, K. Yazawa and A. Shakouri, J. Mater. Chem. C 3, 10362 (2015).CrossRefGoogle Scholar
  14. [14]
    M. Hyland, H. Hunter, J. Liu, E. Veety and D. Vashaee, Applied Energy 182, 518 (2016).CrossRefGoogle Scholar
  15. [15]
    K. Pietrzyk, J. Soares, B. Ohara and H. Lee, Applied Energy 183, 218 (2016).CrossRefGoogle Scholar
  16. [16]
    R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof and R. Mertens, Solid-State Electronics 53, 684 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    X. Hu, H. Takazawa, K. Nagase, M. Ohta and A. Yamamoto, Journal of ELECTRONIC MATERIALS 44, 3637 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    F. Suarez, A. Nozariasbmarz, D. Vashaee and M. C. Ozturk, Energy Environ. Sci. 9, 2099 (2016).CrossRefGoogle Scholar
  19. [19]
    R. Mccarty, Journal of ELECTRONIC MATERIALS 42, 1504 (2013).ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Goupil, W. Seifert, K. Zabrocki, E. Muller and G. J. Snyder, Entropy 13, 1481 (2011).ADSCrossRefGoogle Scholar
  21. [21]
    K. T. Settaluri, H. LO and R. J. Ram, Journal of ELECTRONIC MATERIALS 41, 984 (2012).ADSCrossRefGoogle Scholar
  22. [22]
    J-P. Im, S. E. Moon and C-G. Lyuh, ETRI J. 38, 654 (2016).Google Scholar
  23. [23]
    Y. G. Lee, J. Kim, M-S. Kang, S-H. Baek, S. K. Kim, S-M. Lee et al., Adv. Mater. Technol. 1600292, 1 (2017).ADSGoogle Scholar
  24. [24]
    J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh et al., ACS Nano 11, 7608 (2017).CrossRefGoogle Scholar
  25. [25]
    V. Leonov, IEEE Sensors Journal 13, 2284 (2013).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • S. E. Moon
    • 1
    • 2
    Email author
  • J. Kim
    • 1
  • S.-M. Lee
    • 1
  • J. Lee
    • 1
  • J. P. Im
    • 1
  • J. H. Kim
    • 1
  • S. Y. Im
    • 1
  • E. B. Jeon
    • 1
  • B. Kwon
    • 3
  • H. Kim
    • 3
  • J.-S. Kim
    • 3
  1. 1.ICT Materials Research GroupETRIDaejeonKorea
  2. 2.Department of Advanced EngineeringUSTDaejeonKorea
  3. 3.Center for Electronic MaterialsKISTSeoulKorea

Personalised recommendations