Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1663–1674 | Cite as

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Jiyong Kim
  • Jungho KimEmail author
  • Kyoung-Youm Kim
Article
  • 20 Downloads

Abstract

We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

Keywords

Organic light-emitting diodes (OLEDs) Optical model Air mode Absorption loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. R. Chance, A. Prock and R. Silbey, Advances in Chemical Physics (Wiley, New York, 1978).Google Scholar
  2. [2]
    K. Celebi, T. D. Heidel and M. A. Baldo, Opt. Express 15, 1762 (2007).ADSGoogle Scholar
  3. [3]
    W. L. Barnes, J. of Mod. Opt. 45, 661 (1998).ADSGoogle Scholar
  4. [4]
    L. H. Smith, J. A. E. Wasey and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004).ADSGoogle Scholar
  5. [5]
    R. Meerheim, M. Furno, S. Hofmann, B. Lüssem and K. Leo, Appl. Phys. Lett. 97, 253305 (2010).ADSGoogle Scholar
  6. [6]
    S. Hofmann, M. Thomschke, B. Lüssem and K. Leo, Opt. Express 19, A1250 (2011).ADSGoogle Scholar
  7. [7]
    K. A. Neyts, J. Opt. Soc. Am. A 15, 962 (1998).ADSGoogle Scholar
  8. [8]
    M. Furno, R. Meerheim, S. Hofmann, B. Lüssem and K. Leo, Phys. Rev. B 85, 115205 (2012).ADSGoogle Scholar
  9. [9]
    H. Benisty, R. Stanley and M. Mayer, J. Opt. Soc. Am. A 15, 1192 (1998).ADSGoogle Scholar
  10. [10]
    Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu et al., J. Appl. Phys. 109, 053107 (2011).ADSGoogle Scholar
  11. [11]
    C-L. Lin, H-W. Lin and C-C. Wu Appl. Phys. Lett. 87, 021101 (2005).ADSGoogle Scholar
  12. [12]
    B-Y. Jung and C. K. Hwangbo, J. Korean Phys. Soc. 48, 1281 (2006).Google Scholar
  13. [13]
    H. Cho, C. Yun and S. Yoo, Opt. Express 18, 3404 (2010).ADSGoogle Scholar
  14. [14]
    M. J. Park, G. H. Kim, Y. H. Son, H. W. Bae, J. H. Kong et al., Opt. Express 22, 19919 (2014).ADSGoogle Scholar
  15. [15]
    K. Kang, Y. Lee, J. Kim, H. Lee and B. Yang, IEEE Photonics J. 8, 1600519 (2016).Google Scholar
  16. [16]
    J-S. Kim, P. K. H. Ho, N. C. Greenham and R. H. Friend, J. Appl. Phys. 88, 1073 (2000).ADSGoogle Scholar
  17. [17]
    M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer et al., Org. Electron. 11, 1039 (2010).Google Scholar
  18. [18]
    S-Y. Kim, W-I. Jeong, C. Mayr, Y-S. Park, K-H. Kim et al., Adv. Funct. Mater. 23, 3896 (2013).Google Scholar
  19. [19]
    J. Kim, K. Kang, K-Y. Kim and J. Kim, Jpn. J. Appl. 57, 012101 (2018).ADSGoogle Scholar
  20. [20]
    S. Jung, K-Y. Kim, Y-I. Lee, J-H. Youn, H-T. Moon et al., Jpn. J. Appl. Phys. 50, 122301 (2011).ADSGoogle Scholar
  21. [21]
    J. Kim, S. Jung and I. Jeong, J. Opt. Soc. Kor. 16, 6 (2012).Google Scholar
  22. [22]
    K. Kang, J. Yoon, J. Kim, H. Lee and B. Yang, Opt. Express 23, A709 (2015).ADSGoogle Scholar
  23. [23]
    B. Pyo, C. W. Joo, H. S. Kim, B-H. Kwon, J-I. Lee et al., Nanoscale 8, 8575 (2016).ADSGoogle Scholar
  24. [24]
    M. C. Suh, B. Pyo and H. S. Kim, Org. Electron. 28, 31 (2016).Google Scholar
  25. [25]
    N. S. Kim, W. Y. Lee, B. Pyo and M. C. Suh, Org. Electron. 44, 232 (2017).Google Scholar
  26. [26]
    B. Perucco, N. A. Reinke, D. Rezzonico, M. Moos and B. Ruhstaller, Opt. Express 18, A246 (2010).ADSGoogle Scholar
  27. [27]
    N. Danz, M. Flämmich, D. S. Setz, B. C. Krummacher, D. Michaelis et al., Opt. Lett. 37, 4134 (2012).ADSGoogle Scholar
  28. [28]
    A. Chutinan, K. Ishihara, T. Asano, M. Fujita and S. Noda, Org. Electron. 6, 3 (2005).Google Scholar
  29. [29]
    S. S. Jeong and J-H. Ko, J. Opt. Soc. Kor. 17, 269 (2013).Google Scholar
  30. [30]
    J-W. Kim, J-H. Jang, M-C. Oh, J-W. Shin, D-H. Cho et al., Opt. Express 22, 498 (2014).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Information DisplayKyung Hee UniversitySeoulKorea
  2. 2.Department of Electrical EngineeringSejong UniversitySeoulKorea

Personalised recommendations