Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 117–124 | Cite as

Structural and Temperature-Dependent Electrical/Optical Behaviors of Hot-Wall Deposited BaGa2Se4 Layers

  • J. J. Bang
  • K. J. HongEmail author
  • T. S. Jeong
  • C. J. Youn


The characteristic behavior of hot-wall deposited BaGa2Se4 layers was investigated as a function of temperature. The structural quality of the layers was found to be affected by tensile strain due to the coincidence-lattice mismatch. The carrier mobility showed an aspect of two scattering mechanisms. As the temperature was increased to 100 K, the mobility increased as a function of T1 due to impurity scattering. Also, at temperatures higher than 100 K, its behavior was reduced to two different-temperature slopes caused by lattice scattering. One was a function of T−3/2 at T > 200 K, and the other was a function of T−1/2 for 100 < T > 200 K. From the behavior of log n(T) versus 1/T, three donor-trap levels due to native defects were observed. By tracking the spectral photocurrent (PC) behavior with decreasing temperature, we found that the three PCpeak positions shifted toward shorter wavelengths and their intensities were dramatically decreased. These spectral PC peaks were due to the band-to-band transition. These band-gap variation were well matched by Eg(T) = Eg(0)−2.06×10 −3T2/(T +230.7). By the selection rule, the crystal-field and the spin-orbit splitting were found to be 0.2031 and −0.2259 eV, respectively. In the log Jph versus 1/T plot, we found that the spectral PC-intensity behavior was related to two donor-trap levels by comparing with the carrier concentration results. In conclusion, the dramatic decrease in the spectral PC intensity was attributed to trapping centers.


BaGa2Se4 Photoconductivity Crystal-field effect Hall effect Temperature dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. I. Radautsan, A. N. Georgobiani and I. M. Tiginyanu, Prog. Cryst. Growth Charact. 10, 403 (1984).CrossRefGoogle Scholar
  2. [2]
    O. Vigil, O. Calzadilla, D. Seuret and J. Vidal, Sol. Energy Mater. 10, 139 (1984).ADSCrossRefGoogle Scholar
  3. [3]
    E. Fotin and F. Raga, Sol. State Commun. 14, 847 (1974).ADSCrossRefGoogle Scholar
  4. [4]
    A. N. Georgobiani, S. I. Radautsan and I. M. Tiginyanu, Sov. Phys. Semicond. 19, 121 (1985).Google Scholar
  5. [5]
    S. I. Radautsan, Proc. 8th Int. Conf. on Ternary and Multinary Compounds (Kishinev, Sept. 1990) (Kishinev, Shtiintsa Press, 1992), p. 8.Google Scholar
  6. [6]
    P. Smet, Study of BaAl2S4:Eu and SrS:Cu, Ag as blue emitting materials for thin film electroluminescence, Ph. D. Dissertation, Universiteit Gent, 2005.Google Scholar
  7. [7]
    W. Klee and H. Schäfer, Z. Anorg. Allg. Chem. 479, 125 (1981).CrossRefGoogle Scholar
  8. [8]
    P. C. Donahue and J. E. Hanlon, J. Electrochem. Soc. 121, 137 (1974).CrossRefGoogle Scholar
  9. [9]
    S-H. Choe, M-S. Jin and W-T. Kim, J. Korean Phys. Soc. 47, 1080 (2005).Google Scholar
  10. [10]
    B. G. Tagiev, S. A. Abushov and O. B. Tagiev, J. Appl. Spectrosc. 77, 115 (2010).ADSCrossRefGoogle Scholar
  11. [11]
  12. [12]
    K. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors (Pergamon, Oxford, 1968).Google Scholar
  13. [13]
    N. V. Joshi, Photoconductivity: Art, Science, and Technology (Marcel Dekker, New York, 1990).Google Scholar
  14. [14]
    J. J. Bang, K. J. Hong, T. S. Jeong and C. J. Youn, J. Cryst. Growth (2017). (to be submitted).Google Scholar
  15. [15]
    J. P. Faurie, C. Hsu, S. Sivananthan and X. Chu, Surf. Sci. 168, 473 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    A. Trampert, O. Brandt and K. H. Ploog, Crystal structure of group III Nitrides, in: J. I. Pankove and T. D. Moustakas (Eds.), Semiconductors and Semimetals (Academic, San Diego, 1998), vol. 50.Google Scholar
  17. [17]
    A. Trampert, Physica E 13, 1119 (2002).ADSCrossRefGoogle Scholar
  18. [18]
    A. P. Sutton and R. W. Balluffi, Acta Metallurgica 35, 2177 (1987).CrossRefGoogle Scholar
  19. [19]
    S. M. Sze, Semiconductor Devices Physics and Technology (Wiley, New York, 1985).Google Scholar
  20. [20]
    M. K. Hudait, Y. Lin, P. M. Sinha, J. R. Lindemuth and S. A. Ringel, J. Appl. Phys. 100, 063705 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    K. Kusakabe, T. Furuzuki and K. Ohkawa, Physica B 376-377, 520 (2006).ADSCrossRefGoogle Scholar
  22. [22]
    R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1969).zbMATHGoogle Scholar
  23. [23]
    J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon, Oxford, 1975).Google Scholar
  24. [24]
    P. Dey et al., Solid State Communications 165, 49 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981).ADSCrossRefGoogle Scholar
  26. [26]
    P. B. Allen and M. Cardona, Phys. Rev. B 27, 4760 (1983).ADSCrossRefGoogle Scholar
  27. [27]
    Y. P. Varshni, Physica 34, 149 (1967).ADSCrossRefGoogle Scholar
  28. [28]
    D-R. Hang et al., Nanoscale Res. Lett. 9, 632 (2014).ADSCrossRefGoogle Scholar
  29. [29]
    S-H. Choe, M-S. Jin and W-T. Kim, J. Korean Phys. Soc. 47, 886 (2005).Google Scholar
  30. [30]
    B. Segall and D. T. F. Marple, Physics and Chemistry of II-VI Compounds, edited by M. Aven, J. S. Prenerin (North-Holland, Amsterdam, 1967).Google Scholar
  31. [31]
    S. Charbonneau, E. Fortin and A. Anedda, Phys. Rev. B 31, 2326 (1985).ADSCrossRefGoogle Scholar
  32. [32]
    J. C. Simmons and G. W. Taylor, J. Phys. C 7, 3051 (1974).ADSCrossRefGoogle Scholar
  33. [33]
    P. Kumar, J. Kumar, M. Ahmad and R. Thangaraj, Appl. Phys. A 90, 469 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • J. J. Bang
    • 1
  • K. J. Hong
    • 1
    Email author
  • T. S. Jeong
    • 2
  • C. J. Youn
    • 2
  1. 1.Department of PhysicsChosun UniversityGwangjuKorea
  2. 2.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC)Chonbuk National UniversityJeonjuKorea

Personalised recommendations