Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 800–804 | Cite as

Effect of the Molar Concentration of a Solution on Nanocomposite Crystal Growth in Ferroelectric-Carbon Nanotube Composites Fabricated by using the Sol-gel Method

  • Sin Wook Kang
  • Sam Yeon Cho
  • Sang Don Bu
  • Jin Kyu Han
Article
  • 7 Downloads

Abstract

In this study, Pb(Zr,Ti)O3 (PZT) nanoparticles directly were successfully grown on carbon nanotubes by mixing a PZT solution prepared by using the sol-gel method with functionalized carbon nanotubes. During this process, the effects of the concentration of the PZT solution on the size, crystallinity, and composition ratio of the PZT nanoparticles on the carbon nanotubes were investigated. As the molar concentration of the PZT solution was increased from 0.05 M to 0.2 M, the particle size increased from 6.628 nm to 10.877 nm. As the size of the nanoparticles increased, the surface directions became more diverse. In terms of the crystal structure, the tetragonality of PZT increased with increasing molarity of the PZT solution. This improvement in crystallinity can be further linked to an increase in the ferroelectricity of the PZT-carbon nanotubes, so the nanocomposite fabrication method using carbon nanotubes is expected to affect the characteristics of ferroelectric materials and can be used to further improve the properties of those.

Keywords

Ferroelectric-carbon nanotube composites Solution molar concentration Sol-gel process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Iijima, Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    S. Iijima, Nature 363, 603 (1993).ADSCrossRefGoogle Scholar
  3. [3]
    D. Eder and A. H. Windle, Adv. Mater. 20, 1787 (2008).CrossRefGoogle Scholar
  4. [4]
    J. H. Kwak, J. K. Han and S. D. Bu, Ferroelectrics 457, 62 (2013).CrossRefGoogle Scholar
  5. [5]
    D. H. Jeon, J. K. Han and S. D. Bu, J. Korean Phys. Soc. 66, 123 (2015).ADSCrossRefGoogle Scholar
  6. [6]
    J. H. Kwak, J. K. Han, S. W. Kang, T. A. Johnson and S. D. Bu, Ceram. Inter. 42, 8165 (2016).CrossRefGoogle Scholar
  7. [7]
    J. K. Han, D. H. Jeon, S. Y. Cho, S. W. Kang, J. Lim and S. D. Bu, Nanomaterials 7, 308 (2017).CrossRefGoogle Scholar
  8. [8]
    S. Y. Cho, G. P. Choi, D. H. Jeon, Trent A. Johnson, M. K. Lee, G. J. Lee and S. D. Bu, Curr. Appl. Phys. 15, 1332 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    B. H. Kim, S. A. Yang, S. W. Kang, G. P. Choi, S. Y. Cho, J. K. Han, G. J. Lee, M. K. Lee, H. J. Seog, I. W. Kim and S. D. Bu, Curr. Appl. Phys. 16, 539 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    Y. C. Choi, J. Kim, J. K. Han, S. D. Bu, J. B. Park, H. Lee and B. K. Ahn, J. Korean Phys. Soc. 49, S523 (2006).Google Scholar
  11. [11]
    X. Liu, S. Xu, X. Kuang and X. Wang, RSC Adv. 6, 106690 (2016).CrossRefGoogle Scholar
  12. [12]
    X. Liu, W. Xu, Y. Zhang, D. Xu, G. Wang and Z. Jiang, RSC Adv. 5, 51542 (2015).CrossRefGoogle Scholar
  13. [13]
    Y. Jin, N. Xia and R. A. Gerhardt, Nano Ener. 30, 407 (2016).CrossRefGoogle Scholar
  14. [14]
    N. Jha and S. Ramaprabhu, J. Phys. Chem. C 112, 9315 (2008).CrossRefGoogle Scholar
  15. [15]
    J. K. Han, D. H. Jeon, S. Y. Cho, S. W. Kang, S. A. Yang, S. D. Bu, S. Myung, J. Lim, M. Choi, M. Lee and M. K. Lee, Sci. Rep. 6, 29562 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    J. K. Han, J. H. Kwak, J. O. Kim and S. D. Bu, Curr. Appl. Phys. 14, 1304 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    J. Kim, S. A. Yang, Y. C. Choi, J. K. Han, K. O. Jeong, Y. J. Yun, D. J. Kim, S. M. Yang, D. Yoon, H. Cheong, K. Chang, T. W. Noh and S. D. Bu, Nano Lett. 8, 1813 (2008).ADSCrossRefGoogle Scholar
  18. [18]
    S. A. Yang, Y. C. Choi and S. D. Bu, J. Korean Phys. Soc. 61, 1660 (2012).ADSCrossRefGoogle Scholar
  19. [19]
    S. D. Bu, Y. C. Choi, J. K. Han, S. A. Yang and J. Kim, J. Korean Phys. Soc. 59, 2551 (2011).ADSCrossRefGoogle Scholar
  20. [20]
    J. D. Freire and R. S. Katiar, Phys. Rev. 37, 2074 (1988).ADSCrossRefGoogle Scholar
  21. [21]
    S. A. Yang, B. H. Kim, S. Y. Cho, J. K. Han S. D. Bu and Y. C. Choi, J. Korean Phys. Soc. 68, 545 (2016).ADSCrossRefGoogle Scholar
  22. [22]
    G. Burns and B. A. Scott, Phys. Rev. Lett. 25, 1191 (1970).ADSCrossRefGoogle Scholar
  23. [23]
    C. Muratore, A. N. Reed, J. E. Bultman, S. Ganguli, B. A. Cola and A. A. Voevodin, Carbon 57, 274 (2013).CrossRefGoogle Scholar
  24. [24]
    D. N. Travessa, F. S. Da Silva, F. H. Cristovan, A. N. Jorge Jr. and K. R. Cardoso, Mater. Res. 17, 687 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Sin Wook Kang
    • 1
  • Sam Yeon Cho
    • 1
  • Sang Don Bu
    • 1
  • Jin Kyu Han
    • 2
  1. 1.Department of Physics, Research Institute of Physics and ChemistryChonbuk National UniversityJeonjuKorea
  2. 2.Thin Film Materials Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea

Personalised recommendations