Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 786–794 | Cite as

Inverse MR and Dual-AMR Phenomena in Co/CoO/Ag/Co Sandwiches

  • Nguyen Anh Tuan
  • Luong Van Su
  • Hoang Quoc Khanh
  • Nguyen Anh Tue
  • Nguyen Thi Luyen
Article
  • 15 Downloads

Abstract

Band-form Co/CoO/Ag/Co sandwiches were prepared using radio-frequency magnetron sputtering. The sandwiches had rather thick Co (tCO = 63 nm) and Ag (tAg = 2 ÷ 65 nm) layers and a super-thin paramagnetic cobalt monoxide (CoO) layer (< 1 nm) inserted in the Co/Ag interface. The sandwiches exhibited anomalous magnetoresistance (MR) behavior depending on the tAg value. Inverse magnetoresistance (IMR) effect was observed only at thin tAg values of 2 nm and 6 nm, whereas the dual-anisotropic MR (dual-AMR) occurred at thicker tAg values of 12 nm, 25 nm and 65 nm. A superposition of the dual-AMR and the weak IMR effects was obtained at the thickest Ag layer of 65 nm. The origin of these anomalous MR behaviors was discussed to show the prominent role of the CoO layer and large thickness of the Co and Ag layers.

Keywords

Sandwich IMR Positive MR Dual-AMR Magnetic transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988)ADSCrossRefGoogle Scholar
  2. [1a]
    P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).ADSCrossRefGoogle Scholar
  3. [2]
    S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990)ADSCrossRefGoogle Scholar
  4. [2a]
    S. S. P. Parkin, Annu. Rev. Mater. Sci. 25, 357 (1995).ADSCrossRefGoogle Scholar
  5. [3]
    J. Hong, K. Noma, E. Kanda and H. Kanai, Appl. Phys. Lett. 83, 960 (2003).ADSCrossRefGoogle Scholar
  6. [4]
    B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994).ADSCrossRefGoogle Scholar
  7. [5]
    A. E. Berkowitz et al., Phys. Rev. Lett. 68, 3745 (1992)ADSCrossRefGoogle Scholar
  8. [5a]
    J. Q. Xiao, J. S. Jiang and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).ADSCrossRefGoogle Scholar
  9. [6]
    J. Mathon, Phenomenological Theory of Giant Magnetoresistance, in Spin Electronics, Eds. By M. Ziese and M. J. Thornton (Springer-Verlag Berlin Heidelberg, 2001), p. 71.Google Scholar
  10. [7]
    J. M. George et al., Phys. Rev. Lett. 72, 408 (1994).ADSCrossRefGoogle Scholar
  11. [8]
    J-P. Renard et al., Phys. Rev. B 51, 12821 (1995).ADSCrossRefGoogle Scholar
  12. [9]
    J-P. Renard et al., J. Appl. Phys. 79, 5270 (1996).ADSCrossRefGoogle Scholar
  13. [10]
    C. Bellouard, H. D. Rapp, B. George, S. Mangin, G. Marchal and J. C. Ousset, Phys. Rev. B 53, 5082 (1996).ADSCrossRefGoogle Scholar
  14. [11]
    C. Vouille, A. Fert, A. Barthélémy, S. Y. Hsu, R. Loloee and P. A. Schroeder, J. Appl. Phys. 81, 4573 (1997).ADSCrossRefGoogle Scholar
  15. [12]
    K. Rahmouni, A. Dinia, D. Stoeffler, K. Ounadjela, H. A. M. Van den Berg and H. Rakoto, Phys. Rev. B 59, 9475 (1999).ADSCrossRefGoogle Scholar
  16. [13]
    C. H. Marrows, F. E. Stanley and B. J. Hickey, Appl. Phys. Lett. 75, 3847 (1999).ADSCrossRefGoogle Scholar
  17. [14]
    C. Vouille et al., Phys. Rev. B 60, 6710 (1999).ADSCrossRefGoogle Scholar
  18. [15]
    A. Dinia, M. Guth, G. Schmerber and K. Ounadjela, J. Appl. Phys. 85, 4477 (1999).ADSCrossRefGoogle Scholar
  19. [16]
    M. Buchmeier, R. Schreiber, D. E. Bürgler and P. Grünberg, EPL (Europhys. Lett.) 63, 874 (2003).ADSCrossRefGoogle Scholar
  20. [17]
    C. Park, J-G. Zhu, Y. G. Peng, D. E. Laughlin and R. M. White, IEEE Trans. Magn. 41, 2691 (2005).ADSCrossRefGoogle Scholar
  21. [18]
    C. Fowley, B. S. Chun and J. M. D. Coey, IEEE Trans. Magn. 45, 2403 (2009).ADSCrossRefGoogle Scholar
  22. [19]
    H. S. Hsu et al., Appl. Phys. Lett. 97, 032503 (2010).ADSCrossRefGoogle Scholar
  23. [20]
    Y. P. Zeng, Z. W. Liu and E. Mikmeková, J. Magn. Magn. Mater. 421, 39 (2017).ADSCrossRefGoogle Scholar
  24. [21]
    S. Zsurzsa, L. Péter, L. F. Kiss and I. Bakonyi, J. Magn. Magn. Mater. 421, 194 (2017).ADSCrossRefGoogle Scholar
  25. [22]
    L. Smardz, U. Kbbler and W. Zinn, J. Appl. Phys. 71, 5199 (1992).ADSCrossRefGoogle Scholar
  26. [23]
    S. D. Pappas et al., J. Appl. Phys. 112, 053918 (2012).ADSCrossRefGoogle Scholar
  27. [24]
    A. Marczyńska, J. Skoryna, M. Lewandowski and L. Smardz, Acta Physica Polonica A 127, 549 (2015).CrossRefGoogle Scholar
  28. [25]
    F. Santarossa, S. D. Pappas, A. Delimitis, A. Sousanis and P. Poulopoulos, J. Nanosci. Nanotechnol. 16, 4960 (2016).CrossRefGoogle Scholar
  29. [26]
    S. Gao et al., Nature 529, 68 (2016).ADSCrossRefGoogle Scholar
  30. [27]
    W. Thomson, Proc. R. Soc. Lond. 8, 546 (1857).CrossRefGoogle Scholar
  31. [27a]
    Or: JP. Jan, Galvanomagnetic and thermomagnetic effects in metals, Solid-State Physics -Advances in Research and Applications, Ed. by F. Seitz and D. Turnbull (Academic Press Inc. Publishers, New York, 1957), Vol. 5 p. 1.Google Scholar
  32. [28]
    J. Zhang and R. M. White, J. Appl. Phys. 79, 5113 (1996).ADSCrossRefGoogle Scholar
  33. [29]
    T. R. McGuire, J. A. Aboaf and E. Klokholm: IEEE Trans. Magn. 20, 972 (1984).ADSCrossRefGoogle Scholar
  34. [30]
    S. Kokado and M. Tsunoda, Adv. Mate. Res. 750-752, 978 (2013).CrossRefGoogle Scholar
  35. [31]
    B. Dieny et al., J. Magn. Magn. Mater. 93, 101 (1991).ADSCrossRefGoogle Scholar
  36. [32]
    Z. T. Diao, S. Tsunashima, M. Jimbo and S. Iwata, J. Phys.: Condens. Matter 8, 4959 (1996).ADSGoogle Scholar
  37. [33]
    S. S. P. Parkin et al., J. Appl. Phys. 85, 5828 (1999).ADSCrossRefGoogle Scholar
  38. [34]
    F. Guinea, Phys. Rev. B 58, 9212 (1998).ADSCrossRefGoogle Scholar
  39. [35]
    S. Mukhopadhyay and I. Das, Phys. Rev. Lett. 69, 026601 (2006).ADSCrossRefGoogle Scholar
  40. [36]
    F. Lesmes, A. Salcedo, J. J. Freijo, D. Garcia, A. Hernando and C. Prados, Appl. Phys. Lett. 69, 2596 (1996).ADSCrossRefGoogle Scholar
  41. [37]
    K. Y. Wang, K. W. Edmonds, R. P. Campion, L. X. Zhao, C. T. Foxon and B. L. Gallagher, Phys. Rev. B 72, 085201 (2005).ADSCrossRefGoogle Scholar
  42. [38]
    F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar and H. Bakhru, J. Appl. Phys. 87, 6253 (2000).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Nguyen Anh Tuan
    • 1
  • Luong Van Su
    • 1
  • Hoang Quoc Khanh
    • 1
  • Nguyen Anh Tue
    • 2
  • Nguyen Thi Luyen
    • 3
  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Institute of Engineering Physics (IEP)Hanoi University of Science and Technology (HUST)HanoiVietnam
  3. 3.Faculty of Electronic and Electrical Engineering (FEE)Hung Yen University of Technology and Education (UTEHY)Hung YenVietnam

Personalised recommendations