Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 765–769 | Cite as

Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet

  • Yue Wang
  • Xiao-Liang Shen
  • Rui-Lin Zheng
  • Peng Lv
  • Chun-Xiao Liu
  • Hai-Tao Guo
Article
  • 6 Downloads

Abstract

Optical planar waveguides in terbium-gallium-garnet (TGG) crystals are promising photonic devices, particularly for optical isolators and rotators. In this work, to the best of our knowledge, we report on the fabrication and the characterization of TGG waveguides for the first time. The fabrication procedure involved carbon ion implantation at an energy of 6.0 MeV and a fluence of 5.0×1014 ions/cm2. The effective refractive indices of the propagation modes in the carbonimplanted waveguide were measured by using the prism-coupling technique. The profile of the refractive index and the distribution of the near-field intensity were calculated by using the reflectivity calculation method and the finite-difference beam propagation method, respectively. The carbon-implanted TGG waveguide is considered to be a candidate for a magneto-optical photonic device.

Keywords

Waveguide Terbium gallium garnet Ion implantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. V. Laguta, B. I. Denker, S. E. Sverchkov and I. M. Razdobreev, Quantum Electron. 47, 123 (2017).ADSCrossRefGoogle Scholar
  2. [2]
    L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan and M. Lipson, Nature Photon. 8, 701 (2014).ADSCrossRefGoogle Scholar
  3. [3]
    L. Zhang, D. X. Yang, K. Chen, T. Li and S. Xia, Opt. Laser Technol. 50, 195 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley and Y. Qiu, Phys. Rev. B 78, 064412 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov and E. A. Khazanov, IEEE J. Quantum Electron. 50, 749 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    G. J. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt and L. Wondraczek, Sci. Rep. 5, 8942 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    C. X. Liu, X. L. Shen, R. L. Zheng, H. T. Guo, W. N. Li and W. Wei, Appl. Phys. B 123, 56 (2017).ADSCrossRefGoogle Scholar
  8. [8]
    T. Mizumoto, Y. Shoji and R. Takei, Mater. 5, 985 (2012).CrossRefGoogle Scholar
  9. [9]
    Y. Tan, F. Chen, L. Wang and Y. Jiao, Nucl. Instrum. Meth. Phys. Res. B 260, 567 (2007).ADSCrossRefGoogle Scholar
  10. [10]
    J. D. B. Bradley and M. Pollnau, Laser Photonics Rev. 5, 368 (2011).CrossRefGoogle Scholar
  11. [11]
    Y. Tan, L. N. Ma, S. Akhmadaliev, S. Q. Zhou and F. Chen, Opt. Mater. Express 3, 711 (2016).CrossRefGoogle Scholar
  12. [12]
    C. Ríos, M. Stegmaier, P. Hosseini1, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran and W. H. P. Pernice, Nature Photon. 9, 725 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen and D. Kip, Opt. Express 23, 30188 (2015).ADSCrossRefGoogle Scholar
  14. [14]
    D. Kip, Appl. Phys. B 67, 131 (1998).ADSCrossRefGoogle Scholar
  15. [15]
    A. Tervonen, B. R. West and S. Honkanen, Opt. Eng. 50, 071107 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    F. Chen and J. R. Vázquez de Aldana, Laser Photon. Rev. 8, 251 (2014).CrossRefGoogle Scholar
  17. [17]
    H. Hu, R. Ricken and W. Sohler, Appl. Phys. B 98, 677 (2010).ADSCrossRefGoogle Scholar
  18. [18]
    F. Chen, Laser Photonics Rev. 6, 622 (2012).CrossRefGoogle Scholar
  19. [19]
    I. Bányász, Z. Zolnai, M. Fried, S. Berneschi, S. Pelli and G. Nunzi-Conti, Nucl. Instrum. Meth. Phys. Res. B 326, 81 (2014).ADSCrossRefGoogle Scholar
  20. [20]
    G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards and R. Trejo-Luna, Opt. Laser Technol. 79, 132 (2016).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque and Q. M. Lu, Appl. Phys. B 103, 837 (2011).ADSCrossRefGoogle Scholar
  22. [22]
    F. Chen, X. L. Wang and K. M. Wang, Opt. Mater. 29, 1523 (2007).ADSCrossRefGoogle Scholar
  23. [23]
    C. X. Liu, L. L. Fu, L. L. Zhang, H. T. Guo, W. N. Li, S. B. Lin and W. Wei, Appl. Phys. A 122, 94 (2016).ADSCrossRefGoogle Scholar
  24. [24]
    X. L. Wang, K. M. Wang, G. Fu, S. L. Li, D. Y. Shen, H. J. Ma and R. Nie, Opt. Express 12, 4675 (2004).ADSCrossRefGoogle Scholar
  25. [25]
    J. F. Ziegler, SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org.Google Scholar
  26. [26]
    P. J. Chandler and F. L. Lama, Opt. Acta. 33, 127 (1986).ADSCrossRefGoogle Scholar
  27. [27]
    Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com.Google Scholar
  28. [28]
    C. X. Liu, L. L. Fu, X. F. Zhu, H. T. Guo, W. N. Li, S. B. Lin and W. Wei, J. Korean Phys. Soc. 69, 169 (2016).ADSCrossRefGoogle Scholar
  29. [29]
    Y. Tan, J. R. Vázquez de Aldana and F. Chen, Opt. Eng. 53, 107109 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Yue Wang
    • 1
  • Xiao-Liang Shen
    • 1
  • Rui-Lin Zheng
    • 1
  • Peng Lv
    • 1
  • Chun-Xiao Liu
    • 1
  • Hai-Tao Guo
    • 2
  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of Sciences (CAS)Xi’anChina

Personalised recommendations