Journal of the Korean Physical Society

, Volume 72, Issue 12, pp 1491–1501 | Cite as

Electromagnetically-induced Transparency in Metamaterials for the Potential Applications

  • J. S. Hwang
  • B. S. Tung
  • Y. P. LeeEmail author
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews


Metamaterial (MM) is artificial material in which an unit cell, having a size much smaller than the wavelength of external electromagnetic (EM) wave, is periodically arranged. This MM offers a new tool that can significantly improve the effectiveness of absorber and the sensitivity of sensor through its powerful localization and field enhancement. This review presents recent the potential applications of electromagnetically-induced transparency (EIT) and absorption (EIA) phenomena in MM-based absorber and MM-based sensors, and summarizes the sensitivity differences from the existing sensors. These phenomena provide a high-performance platform for a variety of sensors with easy adjustment of the EM response, and can produce effective narrow- or multi-band absorption.


Electromagnetically-induced transparency and absorption Metamaterial Absorber Sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. J. Padilla, D. N. Basov and D. R. Smith, Mater. Today 9, 28 (2006).CrossRefGoogle Scholar
  2. [2]
    Z. G. Nicolaou and A. E. Motter, Nat. Mater. 11, 608 (2012).ADSCrossRefGoogle Scholar
  3. [3]
    P. Alitalo and S. Tretyakov, Mater. Today 12, 22 (2009).CrossRefGoogle Scholar
  4. [4]
    N. H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou and C. M. Soukoulis, Phys. Rev. B 80, 115123 (2009).ADSCrossRefGoogle Scholar
  5. [5]
    Z. Liao, S. Liu, H. F. Ma, C. Li, B. Jin and T. J. Cui, Sci. Rep. 6, 27596 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    A. S. Jahromi and M. Askari, J. Europ. Opt. Soc. Rap. Public. 9, 14048 (2014).CrossRefGoogle Scholar
  7. [7]
    J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H-T. Chen, A. J. Taylor, J. Han and W. Zhang, Nat. Commun. 3, 1151 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han and W. Zhang, Opt. Express 25, 19844 (2017).ADSCrossRefGoogle Scholar
  9. [9]
    S. G. Rodrigo, F. León-Pérez and L. Martín-Moreno, Proc. IEEE 104, 2288 (2016).CrossRefGoogle Scholar
  10. [10]
    Y. Guo and J. Zhou, Sci. Rep. 5, 8144 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny and C. M. Soukoulis, Phys. Rev. Lett. 109, 187401 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    C. L. G. Alzar, M. A. G. Martinez and P. Nussenzveig, Am. J. Phys. 70, 1 (2002).Google Scholar
  13. [13]
    K. Jiang, M. Lu, S. K. Gupta and Y. Chen, Appl. Phys. A 123, 676 (2017).ADSCrossRefGoogle Scholar
  14. [14]
    N. Liu, S. Kaiser and H. Giessen, Adv. Mater. 20, 4521 (2008).CrossRefGoogle Scholar
  15. [15]
    J. He, P. Ding, J. Wang, C. Fan and E. Liang, Opt. Express 23, 6083 (2015).ADSCrossRefGoogle Scholar
  16. [16]
    N. V. Dung, B. S. Tung, B. X. Khuyen, Y. J. Yoo, Y. J. Kim, J. Y. Rhee, V. D. Lam and Y. P. Lee, J. Phys. D: Appl. Phys. 48, 375103 (2015).CrossRefGoogle Scholar
  17. [17]
    B. S. Tung, B. X. Khuyen, N. V. Dung, V. D. Lam, Y. H. Kim, H. Cheong and Y. P. Lee, Opt. Commun. 356, 362 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    Y. Wen, W. Ma, J. Bailey, G. Matmon and X. Yu, IEEE Trans. THz Sci. Technol. 5, 406 (2015).CrossRefGoogle Scholar
  19. [19]
    B-X. Wang, L-L. Wang, G-Z. Wang, W-Q. Huang, X. Zhai and X-F. Li, Opt. Commun. 325, 78 (2014).ADSCrossRefGoogle Scholar
  20. [20]
    Y. Liu, Y. Q. Zhang, X. R. Jin, S. Zhang and Y. P. Lee, Opt. Commun. 371, 173 (2016).ADSCrossRefGoogle Scholar
  21. [21]
    G. Ghosh, Opt. Commun. 163, 95 (1999).ADSCrossRefGoogle Scholar
  22. [22]
    P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang and X. Zhang, Appl. Phys. Lett. 105, 111109 (2014).ADSCrossRefGoogle Scholar
  23. [23]
    N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos and H. Giessen, Science 332, 1407 (2011).ADSCrossRefGoogle Scholar
  24. [24]
    M. Miyata, J. Hirohata, Y. Nagasaki and J. Takahara, Opt. Express 22, 11399 (2014).ADSCrossRefGoogle Scholar
  25. [25]
    J. Zhou, E. N. Economon, T. Koschny and C. M. Soukoulis, Opt. Lett. 31, 3620 (2006).ADSCrossRefGoogle Scholar
  26. [26]
    N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens and V. D. Lam, Appl. Phys. Express 5, 112001 (2012).ADSCrossRefGoogle Scholar
  27. [27]
    B. S. Tung, B. X. Khuyen, Y. J. Kim, V. D. Lam, K. W. Kim and Y. P. Lee, Sci. Rep. 7, 11507 (2017).ADSCrossRefGoogle Scholar
  28. [28]
    X. Hu, S. Yuan, A. Armghan, Y. Liu, Z. Jiao, H. Lv, C. Zeng, Y. Huang, Q. Huang, Y. Wang and J. Xia, J. Phys. D: Appl. Phys. 50, 025301 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    P. Tassin, T. Koschny and C. M. Soukoulis, Physica B 407, 4062 (2012).ADSCrossRefGoogle Scholar
  30. [30]
    L. Zhu, L. Dong, F. Meng, J. Fu and Q. Wu, Appl. Optics 51, 32 (2012).CrossRefGoogle Scholar
  31. [31]
    A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev and O. J. F. Martin, Phys. Rev. B 76, 201405 (2007).ADSCrossRefGoogle Scholar
  32. [32]
    P. Nordlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman, Nano Lett. 4, 899 (2004).ADSCrossRefGoogle Scholar
  33. [33]
    D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang and H. Ye, Sci. Rep. 7, 45210 (2017).ADSCrossRefGoogle Scholar
  34. [34]
    A. S. Karimullah, C. Jack, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron and M. Kadodwala, Adv. Mater. 27, 5610 (2015).CrossRefGoogle Scholar
  35. [35]
    C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron and M. Kadodwala, Nano Lett. 16, 5806 (2016).ADSCrossRefGoogle Scholar
  36. [36]
    R. Tullius et al., ACS Nano 26, 11 (2017).Google Scholar
  37. [37]
    C.Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug and G. Shvets, Nat. Mater. 11, 69 (2012).ADSCrossRefGoogle Scholar
  38. [38]
    V. Savinov, V. A. Fedotov, P. A. J. Groot and N. I. Zheludev, Supercond. Sci. Technol. 26, 084001 (2013).ADSCrossRefGoogle Scholar
  39. [39]
    Y. Wang, H. Zheng, C. Xue and W. Zhang, Sensors 16, 1165 (2016).CrossRefGoogle Scholar
  40. [40]
    E. Semouchkina, R. Duan, G. Semouchkin and R. Pandey, Sensors 15, 9344 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversitySeoulKorea

Personalised recommendations