Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 12, pp 1484–1490 | Cite as

Terahertz Investigation of Dirac Materials: Graphene and Topological Insulators

  • Chihun In
  • Hyunyong Choi
Review Articles
  • 137 Downloads
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

Light-matter interaction in two-dimensional Dirac materials exhibits intriguing features in comparison to conventional semiconductors. Recent discoveries of graphene and three-dimensional topological insulators (TIs) have demonstrated novel terahertz (THz) optoelectronics, such that control over the electronic properties of Dirac-type carriers can be conducted by optical techniques. In this paper, we review recent investigations of graphene and TIs using broadband THz radiation and ultrashort optical pulses. After discussing state-of-the-art progress in graphene and TI investigations (Sec. I), we present ultrafast optical techniques that employ optical-pump THz-probe spectroscopy (Sec. II). In Sec. III, broadband THz responses in Dirac materials are examined according to semi-classical theories, and corresponding physical rationales are extended to elucidate Dirac plasmons in graphene and TIs (Sec. IV). Finally, brief summaries with research outlooks for future THz applications of graphene and TIs are provided (Sec. V).

Keywords

Terahertz Graphene Topological insulators Spectroscopy Plasmon 

References

  1. [1]
    A. H. C. Neto, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  2. [2]
    F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, Nat. Nanotechnol. 9, 780 (2014).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Zhang, Y-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).ADSCrossRefGoogle Scholar
  4. [4]
    K. S. Novoselov et al., Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    R. R. Nair et al., Science 320, 1308 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    F. Wang et al., Science 320, 206 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi and J. Son, Nano Lett. 12, 551 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    J. Yan, Y. Zhang, P. Kim and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    H. Yan, D. Song, K. F. Mak, I. Chatzakis, J. Maultzsch and T. F. Heinz, Phys. Rev. B 80, 121403 (2009).ADSCrossRefGoogle Scholar
  10. [10]
    S. H. Lee et al., Nat. Mater. 11, 936 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    W. Gao et al., Nano Lett. 14, 1242 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    J. Horng et al., Phys. Rev. B 83, 165113 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    L. Ren et al., Nano Lett. 12, 3711 (2012).ADSCrossRefGoogle Scholar
  14. [14]
    H. Choi et al., Appl. Phys. Lett. 94, 172102 (2009).ADSCrossRefGoogle Scholar
  15. [15]
    G. Jnawali, Y. Rao, H. Yan and T. F. Heinz, Nano Lett. 13, 524 (2013).ADSCrossRefGoogle Scholar
  16. [16]
    S-F. Shi, T-T. Tang, B. Zeng, L. Ju, A. Zettl and F. Wang, Nano Lett. 14, 1578 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong and N. Gedik, Phys. Rev. Lett. 113, 056602 (2014).ADSCrossRefGoogle Scholar
  18. [18]
    A. J. Frenzel et al., Appl. Phys. Lett. 102, 113111 (2013).ADSCrossRefGoogle Scholar
  19. [19]
    G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram and P. Avouris, ACS Nano 5, 5848 (2011).CrossRefGoogle Scholar
  20. [20]
    C-H. Liu, Y-C. Chang, T. B. Norris and Z. Zhong, Nat. Nanotechnol. 9, 273 (2014).ADSCrossRefGoogle Scholar
  21. [21]
    B. Sensale-Rodriguez et al., Nat. Commun. 3, 780 (2012).CrossRefGoogle Scholar
  22. [22]
    P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman and N. D. Robinson, ACS Nano 4, 637 (2010).CrossRefGoogle Scholar
  23. [23]
    W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li and D. Y. Tang, Appl. Phys. Lett. 96, 031106 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    P. H. Ho, S. S. Li, Y. T. Liou, C. Y. Wen, Y. H. Chung and C. W. Chen, Adv. Mater. 27, 282 (2015).CrossRefGoogle Scholar
  25. [25]
    Q. Li et al., Nat. Commun. 6, 7082 (2015).CrossRefGoogle Scholar
  26. [26]
    J. Kim et al., Nano Lett. 12, 5598 (2012).ADSCrossRefGoogle Scholar
  27. [27]
    C. In, H. Kim, B. Min and H. Choi, Adv. Mater. 28, 1495 (2015).CrossRefGoogle Scholar
  28. [28]
    M. S. Hwang et al., Nano Lett. 17, 1892 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  30. [30]
    Y. Cao et al., Nat. Phys. 9, 499 (2013).CrossRefGoogle Scholar
  31. [31]
    J. E. Moore, Nature 464, 194 (2010).ADSCrossRefGoogle Scholar
  32. [32]
    Y. Xia et al., Nat. Phys. 5, 18 (2009).CrossRefGoogle Scholar
  33. [33]
    C. W. Luo et al., Nano Lett. 13, 5797 (2013).ADSCrossRefGoogle Scholar
  34. [34]
    J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero and N. Gedik, Nat. Nanotechnol. 7, 96 (2012).ADSCrossRefGoogle Scholar
  35. [35]
    F. Xiu et al., Nat. Nanotechnol. 6, 216 (2011).ADSCrossRefGoogle Scholar
  36. [36]
    D. Kong et al., Nat. Nanotechnol. 6, 705 (2011).ADSCrossRefGoogle Scholar
  37. [37]
    L. Jiang, C. L. Kane and J. Preskill, Phys. Rev. Lett. 106, 130504 (2011).ADSCrossRefGoogle Scholar
  38. [38]
    C. Lee, F. Katmis, P. Jarillo-herrero, J. S. Moodera and N. Gedik, Nat. Commun. 7, 12014 (2016).ADSCrossRefGoogle Scholar
  39. [39]
    A. B. Kuzmenko, E. Van Heumen, F. Carbone and D. Van Der Marel, 100, 117401 (2008).Google Scholar
  40. [40]
    J. M. Dawlaty et al., Appl. Phys. Lett. 93, 131905 (2008).ADSCrossRefGoogle Scholar
  41. [41]
    I. Gierz et al., Nat. Mater. 12, 1119 (2013).ADSCrossRefGoogle Scholar
  42. [42]
    Y. H. Wang et al., Phys. Rev. Lett. 109, 127401 (2012).ADSCrossRefGoogle Scholar
  43. [43]
    S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412 (2009).ADSCrossRefGoogle Scholar
  44. [44]
    E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).ADSCrossRefGoogle Scholar
  45. [45]
    P. Di Pietro et al., Nat. Nanotechnol. 8, 556 (2013).ADSCrossRefGoogle Scholar
  46. [46]
    T. Stauber, G. Gómez-Santos and L. Brey, ACS Photonics 4, 2978 (2017).CrossRefGoogle Scholar
  47. [47]
    T. Stauber, G. Gómez-Santos and L. Brey, Phys. Rev. B 88, 205427 (2013).ADSCrossRefGoogle Scholar
  48. [48]
    T. Stauber, J. Phys. Condens. Matter 26, 123201 (2014).CrossRefGoogle Scholar
  49. [49]
    C. In et al., Nano Lett. 18, 734 (2018).ADSCrossRefGoogle Scholar
  50. [50]
    E. McCann, Phys. Rev. B 74, 161403 (2006).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations