Effect of collimator angles on the dosimetric results of volumetric modulated arc therapy planning for patients with a locally-advanced nasopharyngeal carcinoma
- 83 Downloads
- 2 Citations
Abstract
In volumetric modulated arc therapy (VMAT) planning, usually the collimator is rotated to minimize interleaf leakage and the tongue-and-groove effect. The objective of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plans for patients with a locally-advanced nasopharyngeal carcinoma (LA-NPC). VMAT treatment planning sets were generated using the same planning parameters, but with different collimator angles for 11 LA-NPC patients. Each set was composed of 10 plans with collimator angles at 0, 5, 10, 15, 20, 25, 35, 40, and 45 degrees. Dosimetric parameters, such as target coverage, organs at risk (OAR), and dose conformity, were analyzed at various collimator angles. With increasing collimator angles, the absorbed doses to the optic apparatus were increased by up to 35% comparing to that at a collimator angle of 0°. The best value of the conformity index (CI) was 0.971 ± 0.023 at collimator angles of 20° and 30°. The worst value of CI was 0.917 ± 0.051 at a collimator angle of 0°. The homogeneity index (HI)95 and HI98 had the best values of 0.106 ± 0.040 and 0.079 ± 0.031, respectively, at a collimator angle of 25°. The worst values of HI95 and HI98 were 0.136 ± 0.039 and 0.105 ± 0.032, respectively, at a collimator angle of of 0°. The maximum doses for some OARs (body, ear, parotid gland, mandible, and brainstem) and the HI did not show any statistically significant differences. However, the mean doses had positive correlations (r = 0.449 ~ 0.773, p<0.001) with the irradiated volume. The CI had a weak positive correlation (r = 0.316, p<0.001) with the irradiated volume. Other comparison parameters were evaluated as functions of the collimator angle. These findings will give useful information for choosing the collimator angle in VMAT plans for patients with a LA-NPC.
Keywords
Collimator angle Dose volume histogram RapidArc VMATPreview
Unable to display preview. Download preview PDF.
References
- [1]M. Johnston, S. Clifford, R. Bromley, M. Back, L. Oliver and T. Eade, Clin. Oncol. 23, 503 (2011).CrossRefGoogle Scholar
- [2]A. Holt, D. Van Gestel, M. P. Arends, E. W. Korevaar, D. Schuring, M. C. Kunze-Busch, R. J. Louwe and C. van Vliet-Vroegindeweij, Rad. Oncol. 8, 1 (2013).CrossRefGoogle Scholar
- [3]F. K. Lee, C. W. Yip, F. C. Cheung, A. K. Leung, R. M. Chau and R. K. Ngan, Med. Dosimetry 39, 44 (2014).CrossRefGoogle Scholar
- [4]T. Lee, H. Ting, P. Chao and F. Fang, Clin. Oncol. 24, 196 (2012).CrossRefGoogle Scholar
- [5]E. Vanetti, A. Clivio, G. Nicolini, A. Fogliata, S. Ghosh-Laskar, J. P. Agarwal, R. R. Upreti, A. Budrukkar, V. Murthy and D. D. Deshpande, Radiotherapy and Oncology 92, 111 (2009).CrossRefGoogle Scholar
- [6]F. Stieler, D. Wolff, H. Schmid, G. Welzel, F. Wenz and F. Lohr, Radiotherapy and Oncology 101, 388 (2011).CrossRefGoogle Scholar
- [7]M. Rao, W. Yang, F. Chen, K. Sheng, J. Ye, V. Mehta, D. Shepard and D. Cao, Med. Phys. 37, 1350 (2010).CrossRefGoogle Scholar
- [8]X. Jin, J. Yi, Y. Zhou, H. Yan, C. Han and C. Xie, Med. Dosimetry 38, 418 (2014).CrossRefGoogle Scholar
- [9]T. Lee, P. Chao, H. Ting, S. Lo, Y. Wang, C. Tuan, F. Fang and T. Su, Journal of Applied Clinical Med. Phys. 12, 158 (2011).CrossRefGoogle Scholar
- [10]S. Cilla, F. Deodato, C. Digesu, G. Macchia, V. Picardi, M. Ferro, G. Sallustio, M. De Spirito, A. Piermattei and A. G. Morganti, Med. Dosimetry 39, 108 (2014).CrossRefGoogle Scholar
- [11]M. Treutwein, M. Hipp, O. Koelbl and B. Dobler, Rad. Oncol. 7, 1 (2012).CrossRefGoogle Scholar
- [12]Varian Medical System, Eclipse Algorithms Reference Guide. Ch 9 - 10, 305 (2010).Google Scholar
- [13]A. Bertelsen, C. R. Hansen, J. Johansen and C. Brink, Radiotherapy and Oncology 95, 142 (2010).CrossRefGoogle Scholar
- [14]J. C. Chow and G. N. Grigorov, Phys. Med. Biol. 51, N299 (2006).CrossRefGoogle Scholar
- [15]J. Alvarez-Moret, F. Pohl, O. Koelbl and B. Dobler, Rad. Oncol. 5, 1 (2010).CrossRefGoogle Scholar
- [16]F. Stieler, D. Wolff, H. Schmid, G. Welzel, F. Wenz and F. Lohr, Radiotherapy and Oncology 101, 388 (2011).CrossRefGoogle Scholar
- [17]W. F. Verbakel, J. P. Cuijpers, D. Hoffmans, M. Bieker, B. J. Slotman and S. Senan, Intern. J. Rad. Oncol. Biol. Phys. 74, 252 (2009).CrossRefGoogle Scholar
- [18]L. Xing, Z. Lin, S. S. Donaldson, Q. T. Le, D. Tate, D. R. Goffinet, S. Wolden, L. Ma and A. L. Boyer, Radiotherapy and Oncology 56, 97 (2000).CrossRefGoogle Scholar
- [19]S. S. Kumar, R. Holla, P. Sukumar, S. Padmanaban and N. Vivekanandan, Rep. Pract. Oncol. Radiotherapy 18, 87 (2013).CrossRefGoogle Scholar
- [20]S. Sharma, D. Manigandan, S. Goyal, P. Sahai, V. Subramani, S. Chander, P. K. Julka, G. K. Rath, Intern. J. Cancer Therapy and Oncology 3, 3212 (2015).CrossRefGoogle Scholar
- [21]Y. H.Kim, H. R. Park, W. T. Kim, D. W. Kim, Y. Ki, J. Lee, J. Bae, D. Park, H. Jeon and J. H. Nam, J. Korean Phys. Soc. 67, 243 (2015).ADSCrossRefGoogle Scholar
- [22]M. Stasi, S. Bresciani, A. Miranti, A. Maggio, V. Sapino and P. Gabriele, Med. Phys. 39, 7626 (2012).CrossRefGoogle Scholar
- [23]E. Schreibmann, A. Dhabaan, E. Elder and T. Fox, Med. Phys. 36, 4530 (2009).CrossRefGoogle Scholar
- [24]G. Heilemann, B. Poppe and W. Laub, Med. Phys. 40, 031702 (2013).CrossRefGoogle Scholar
- [25]M. Okumura, Y. Obata, K. Shimomura, M. Tamura and Y. Nishimura, Phys. Med. Biol. 55, 3101 (2010).CrossRefGoogle Scholar
- [26]J. Peng, Z. Zhang, L. Zhou, J. Zhao, J. Wang, L. Kong and W. Hu, Med. Phys. 40, 031703 (2013).CrossRefGoogle Scholar
- [27]L. Coleman and C. Skourou, Med. Phys. 40, 111715 (2013).CrossRefGoogle Scholar