Skip to main content
Log in

Experimental investigation on the characteristics of a solar cell under different illumination intensities and shading areas

  • Letters
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The characteristics of a solar cell, the short-circuit current (I sc ), the open-circuit voltage (V oc ), the maximum power point (V m , I m ), the fill factor (FF) and the photoelectric conversion efficiency (η) under different illumination intensities and shading areas have been experimentally investigated. The work factor ω is given by ω = (1 - A/A 0) × S/S 0, where A 0 is the total solar cell area, A the shading area, S 0 the benchmark reference irradiation level, and S the new level of the irradiation, is introduced to take the light intensity and shading area into account. The results show that Isc and Im increase on an approximately linear increasing way with ω, but V oc and V m approach the saturation levels. The reason is that the current is a linear function of ω, and the relationship of the voltage to ω is logarithmic. We also found I sc (V m ) to depend more on ω than I m (V oc ). In addition, we observed that η tended to increase linearly with ω, but FF tended to converge to saturation. The reason for the behavior of η is the reduction in the contact resistance and in the electron-hole recombination with increasing ω. However, FF is mainly determined by V oc . The improvement in the solar cell performance with increasing ω results from an increase in the current, but not in the voltage or the fill factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Parida, S. Iniyan and R. Goic, Renew. Sust. Energ. Rev. 15, 1625 (2011).

    Article  Google Scholar 

  2. J. T. Liu, X. H. Deng, W. Yang and J. Li, Phys. Chem. Chem. Phys. 17, 3303 (2015).

    Article  Google Scholar 

  3. H. Ohtsuka, M. Sakamoto, M. Koyama, K. Tsutsui, T. Uematsu and Y. Yazawa, Prog. Photovoltaics Res. Appl. 9, 1 (2001).

    Article  Google Scholar 

  4. H. Helmers, M. Schachtner and A. W. Bett, Sol. Energ. Mat. Sol. C 116, 144 (2013).

    Article  Google Scholar 

  5. P. Singh, S. N. Singh, M. Lal and M. Husain, Sol. Energ. Mat. Sol. C 92, 1611 (2008).

    Article  Google Scholar 

  6. W. C. Yang, C. Lo, C. Y. Wei and W. S. Lour, IEEE Electron Device Lett. 32, 1412 (2011).

    Article  ADS  Google Scholar 

  7. D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans and P. Heremans, Appl. Phys. Lett. 92, 243310 (2008).

    Article  ADS  Google Scholar 

  8. D. D’Ercole, L. Dominici, T. M. Brown, F. Michelotti, A. Reale and A. D. Carlo, Appl. Phys. Lett. 99, 213301 (2011).

    Article  ADS  Google Scholar 

  9. M. C. Alonso-García, J. M. Ruiz and F. Chenlo, Sol. Energ. Mat. Sol. C 90, 329 (2006).

    Article  Google Scholar 

  10. J. B. Bai, Y. Cao, Y. Z. Hao, Z. Zhang, S. Liu and F. Cao, Sol. Energy 112, 41 (2015).

    Article  ADS  Google Scholar 

  11. F. Khan, S. N. Singh and M. Husain, Sol. Energ. Mat. Sol. C 94, 1473 (2010).

    Article  Google Scholar 

  12. A. A. Ghoneim, K. M. Kandil, A. Y. Al-Hasan, M. S. Altouq, A. M. Al-asaadil, L. M. Alshamari and A. A. Shamsaldein, Energy Sci Tech. 2, 43 (2011).

    Google Scholar 

  13. V. Quaschning and R. Hanitsch, in Photovoltaic Specialists Conference (Washington, U.S.A, May 13-17, 1996), p. 1287.

    Google Scholar 

  14. A. Dolara, G. C. Lazaroiu, S. Leva and G. Manzolini, Energy 55, 466 (2013).

    Article  Google Scholar 

  15. F. Al-Amri and T. K. Mallick, Int. J. Photoenergy 2014, 642819 (2014).

    Article  Google Scholar 

  16. H. M. Tian, F. Mancilla-David, K. Ellis, E. Muljadi and P. Jenkins, Sol. Energy 95, 1 (2013).

    Article  ADS  Google Scholar 

  17. H. J. Solheim, H. G. Fjær, E. A. Sørheim and S. E. Foss, Energy Procedia 38, 183 (2013).

    Article  Google Scholar 

  18. M. García, L. Marroyo, E. Lorenzo, J. Marcos and M. Pérez, Prog. Photovoltaics Res. Appl. 22, 1292 (2014).

    Article  Google Scholar 

  19. A. El-Shaer, M. T. Y. Tadros and M. A. Khalifa, Intern. J. Emerging Tech. Adv. Engin. 4, 311 (2014).

    Google Scholar 

  20. E. Cuce, P. M. Cuce and T. Bali, Appl. Energ. 111, 374 (2013).

    Article  Google Scholar 

  21. D. Sera, R. Teodorescu and P. Rodriguez, in Industrial Electronics (Vigo, Spain, June 4-7, 2007), p. 2392.

    Google Scholar 

  22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, third edition (John Wiley & Sons, Hoboken, 2007), p. 663.

    Google Scholar 

  23. W. D. Soto, S. A. Klein and W. A. Beckman, Sol. Energy 80, 78 (2006).

  24. Z. T. Zhai, Ph. D dissertation, University of Science and Technology of China, 2008.

  25. M. Sabry and A. E. Ghitas, Vacuum 80, 444 (2006).

  26. S. R. Wenham, M. A. Green, M. E. Watt and R. Corkish, Applied Photovaltaics, second edition (Earthscan, London, 2007), p. 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W.B., Hu, F.Y., He, X.D. et al. Experimental investigation on the characteristics of a solar cell under different illumination intensities and shading areas. Journal of the Korean Physical Society 66, 1645–1648 (2015). https://doi.org/10.3938/jkps.66.1645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1645

Keywords

Navigation