Abstract
Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data, different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’ variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast, the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show how to use the equations and discuss how they may allow more reasonable analyses and comparisons of parameter values among different concepts in a CPN, and across different CPNs.
This is a preview of subscription content, access via your institution.




References
Anderson, J. R., & Fincham, M. (1996). Categorization and sensitivity to correlation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 259-277. https://doi.org/10.1037/0278-7393.22.2.259
Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39(2), 216-233. doi:https://doi.org/10.1006/jmps.1995.1021
Ashcraft, M. H. (1978). Property norms for typical and atypical items from 17 categories: A description and discussion. Memory & Cognition, 6(3), 227-232. doi:https://doi.org/10.3758/BF03197450
Barsalou, L.W. (1987). The instability of graded structure: Implications for the nature of concepts. In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors in categorization (pp. 101–140). Cambridge: Cambridge University Press.
Bolognesi, M., Pilgram, R., & van den Heerik, R. (2017). Reliability in content analysis: The case of semantic feature norms classification. Behavior Research Methods, 49(6), 1984–2001. doi:https://doi.org/10.3758/s13428-016-0838-6
Bruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., & Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience and Biobehavioral Reviews, 103, 3-13. doi:https://doi.org/10.1016/j.neubiorev.2019.05.015
Buchanan, E.M., De Deyne, S., & Montefinese, M. (in press). A practical primer on processing semantic property norm data. Cognitive Processing doi: https://doi.org/10.1007/s10339-019-00939-6
Canessa, E. & Chaigneau, S. E. (in press). Mathematical regularities of data from the property listing task. Journal of Mathematical Psychology, 102376. doi:https://doi.org/10.1016/j.jmp.2020.102376
Chaigneau, S. E., Canessa, E., Barra, C., & Lagos, R. (2018). The role of variability in the property listing task. Behavior Research Methods, 50(3), 972-988. doi:https://doi.org/10.3758/s13428-017-0920-8
Chao, A., & Chiu, C. H. (2016). Species richness: Estimation and comparison. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri & J. L. Teugels (Eds.) Wiley StatsRef: Statistics Reference Online (pp. 1–26). Chichester, UK: John Wiley & Sons, Ltd doi:https://doi.org/10.1002/9781118445112.stat03432.pub2.
Chao, A. & Jost, L. (2012). Coverage-based rarefaction: standardizing samples by completeness rather than by sample size. Ecology, 93, 2533–2547.
Chao, A., Gotelli, N., Hsieh, T.C., Sander, E., Ma, K.H., Colwell, R. & Ellison, A. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. doi:https://doi.org/10.1177/001316446002000104
Coley, J. D., Hayes, B., Lawson, C., & Moloney, M. (2004). Knowledge, expectations, and inductive reasoning within conceptual hierarchies. Cognition, 90(3), 217-253. doi:https://doi.org/10.1016/S0010-0277(03)00159-8
Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132(2), 163-201. doi:https://doi.org/10.1037/0096-3445.132.2.163
De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small world of words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987-1006. doi:https://doi.org/10.3758/s13428-018-1115-7
Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The centre for speech, language and the brain (CSLB) concept property norms. Behavior Research Methods, 46(4), 1119-1127. doi:https://doi.org/10.3758/s13428-013-0420-4
Devereux, B. J., Taylor, K. I., Randall, B., Geertzen, J., & Tyler, L. K. (2016). Feature statistics modulate the activation of meaning during spoken word processing. Cognitive Science, 40(2), 325-350. doi:https://doi.org/10.1111/cogs.12234
Duarte, L. R., Marquié, L., Marquié, J., Terrier, P., & Ousset, P. (2009). Analyzing feature distinctiveness in the processing of living and non-living concepts in Alzheimer's disease. Brain and Cognition, 71(2), 108–117. doi:https://doi.org/10.1016/j.bandc.2009.04.007
Flanagan, K. J., Copland, D. A., Chenery, H. J., Byrne, G. J., & Angwin, A. J. (2013). Alzheimer's disease is associated with distinctive semantic feature loss. Neuropsychologia, 51(10), 2016–2025. doi:https://doi.org/10.1016/j.neuropsychologia.2013.06.008
Garrard, P., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2001). Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts, Cognitive Neuropsychology, 18(2), 125-174. doi:https://doi.org/10.1080/02643290125857
Glaser, B.G. & Strauss, A.L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Chicago: Aldine.
Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123(2), 178-200. doi:https://doi.org/10.1037/0096-3445.123.2.178
Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press.
Grondin, R., Lupker, S. J., & McRae, K. (2009). Shared features dominate semantic richness effects for concrete concepts. Journal of Memory and Language, 60(1), 1-19. doi:https://doi.org/10.1016/j.jml.2008.09.001
Hallgren K. A. (2012). Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 23–34. doi:https://doi.org/10.20982/tqmp.08.1.p023
Hampton, J. A. (1979). Polymorphous concepts in semantic memory. Journal of Verbal Learning and Verbal Behavior, 18(4), 441-461. doi:https://doi.org/10.1016/S0022-5371(79)90246-9
Hargreaves, I. S., & Pexman, P. M. (2014). Get rich quick: The signal to respond procedure reveals the time course of semantic richness effects during visual word recognition. Cognition, 131(2), 216–242. doi:https://doi.org/10.1016/j.cognition.2014.01.001
Hough, G., & Ferraris, D. (2010). Free listing: A method to gain initial insight of a food category. Food Quality and Preference, 21(3), 295-301. doi:https://doi.org/10.1016/j.foodqual.2009.04.001
Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelle, 37, 241–272.
Kounios, J., Green, D. L., Payne, L., Fleck, J. I., Grondin, R., & McRae, K. (2009). Semantic richness and the activation of concepts in semantic memory: Evidence from event-related potentials. Brain Research, 1282, 95–102. doi:https://doi.org/10.1016/j.brainres.2009.05.092
Kremer, G., & Baroni, M. (2011). A set of semantic norms for German and Italian. Behavior Research Methods, 43(1), 97–109. doi:https://doi.org/10.3758/s13428-010-0028-x
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. doi:https://doi.org/10.2307/2529310
Lenci, A., Baroni, M., Cazzolli, G., & Marotta, G. (2013). BLIND: A set of semantic feature norms from the congenitally blind. Behavior Research Methods, 45(4), 1218-1233. doi:https://doi.org/10.3758/s13428-013-0323-4
McRae, K., Cree, G. S., Westmacott, R., & De Sa, V. R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology, 53(4), 360–373. doi:https://doi.org/10.1037/h0087323
McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559. doi:https://doi.org/10.3758/BF03192726
Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2013). Semantic memory: A feature-based analysis and new norms for Italian. Behavior Research Methods, 45(2), 440-461. doi:https://doi.org/10.3758/s13428-012-0263-4
Perri, R., Zannino, G., Caltagirone, C., & Carlesimo, G. A. (2012). Alzheimer's disease and semantic deficits: A feature-listing study. Neuropsychology, 26(5), 652-663. doi:https://doi.org/10.1037/a0029302
Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). The neural consequences of semantic richness: When more comes to mind, less activation is observed: Research report. Psychological Science, 18(5), 401–406. doi:https://doi.org/10.1111/j.1467-9280.2007.01913.x
Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin and Review, 15(1), 161-167. doi:https://doi.org/10.3758/PBR.15.1.161
Rasmussen, S.L., & Starr, N., (1979). Optimal and adaptive stopping in the search for new species. Journal of the American Statistical Association, 74, 661–667.
Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Frontiers in Human Neuroscience, 6, 315. doi:https://doi.org/10.3389/fnhum.2012.00315
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7(4), 573–605. doi:https://doi.org/10.1016/0010-0285(75)90024-9
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8(3), 382–439. https://doi.org/10.1016/0010-0285(76)90013-X
Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., & Storms, G. (2004). Dutch norm data for 13 semantic categories and 338 exemplars. Behavior Research Methods, Instruments, & Computers, 36, 506–515. doi:https://doi.org/10.3758/BF03195597
Schyns, P. G., Goldstone, R. L., & Thibaut, J. (1998). The development of features in object concepts. Behavioral and Brain Sciences, 21(1), 1–54. doi:https://doi.org/10.1017/S0140525X98000107
Siew, C. S. Q. (in press). Feature distinctiveness effects in language acquisition and lexical processing: Insights from megastudies. Cognitive Processing doi:https://doi.org/10.1007/s10339-019-00947-6
Sokal, R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327-352. doi:https://doi.org/10.1037/0033-295X.84.4.327
Tversky, A., & Hutchinson, J. W. (1986). Nearest neighbor analysis of psychological spaces. Psychological Review, 93(1), 3–22. doi:https://doi.org/10.1037/0033-295X.93.1.3
Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48(4), 422–488. doi:https://doi.org/10.1016/j.cogpsych.2003.09.001
Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40(1), 183–190. doi:https://doi.org/10.3758/BRM.40.1.183
Vivas, J., Vivas, L., Comesaña, A., Coni, A. G., & Vorano, A. (2017). Spanish semantic feature production norms for 400 concrete concepts. Behavior Research Methods, 49(3), 1095–1106. doi:https://doi.org/10.3758/s13428-016-0777-2
Walker, L. J., & Hennig, K. H. (2004). Differing conceptions of moral exemplarity: Just, brave, and caring. Journal of Personality and Social Psychology, 86(4), 629–647. doi:https://doi.org/10.1037/0022-3514.86.4.629
Wiemer-Hastings, K., & Xu, X. (2005). Content Differences for Abstract and Concrete Concepts. Cognitive Science, 29, 719-736. doi:https://doi.org/10.1207/s15516709cog0000_33
Wu, L., & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: Evidence from property generation. Acta Psychologica, 132(2), 173–189. doi:https://doi.org/10.1016/j.actpsy.2009.02.002
Acknowledgements
This research was carried out with funds provided by ANID, Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) of the Chilean government grant 1200139. Felipe Medina thankfully acknowledges funding from Comisión Nacional de Investigación Científica y Tecnológica, CONICYT Ph.D. fellowship 21151523. We are grateful to Penny Pexman and Jorge Vivas for their valuable input on the current work. The authors declare to have no known conflicts of interest regarding the work being reported here.
None of the data or materials for the experiments reported here are available, and none of the experiments was preregistered. However, the interested reader may directly contact the corresponding author and he will send the corresponding materials and data to the reader.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Canessa, E., Chaigneau, S.E., Lagos, R. et al. How to carry out conceptual properties norming studies as parameter estimation studies: Lessons from ecology. Behav Res 53, 354–370 (2021). https://doi.org/10.3758/s13428-020-01439-8
Published:
Issue Date:
Keywords
- Conceptual properties norming studies
- Property listing task
- Parameter estimation
- Sample size determination
- Sample coverage