Objective measurement of gestalts: Quantifying grouping effect by tilt aftereffect

Article

Abstract

The importance of holistic perception is described by Gestalt psychology and its principles. Gestalt psychologists have promoted a formal and testable framework for these principles. Quantitative measurements have been introduced from Gestalt psychology in order to complement traditional phenomenal descriptions. Here we demonstrated a new method of measuring grouping effects objectively and quantitatively, by means of tilt aftereffect (TAE) from visual adaptation. Experiment 1 validated the method by measuring grouping based on either proximity or color similarity. Experiments 2 and 3 verified that this paradigm is also effective with dimotif lattices in which different perceptual organizations compete. The novel TAE-based paradigm is an objective and effective method for studying perceptual organization, especially the relationship between different Gestalt principles.

Keywords

Competing organization Tilt aftereffect (TAE) Objective measurement 

Notes

Author note

This work was supported by the National Key Basic Research Program of China Grant 2015CB351701, National Nature Science Foundation of China Grant 91132302, and Strategic Priority Research Program of Chinese Academy of Sciences (B) Grants XDB02010001 and XDB02050001.

References

  1. Alais, D., Blake, R., & Lee, S.-H. (1998). Visual features that vary together over time group together over space. Nature Neuroscience, 1, 160–164. doi: 10.1038/414 CrossRefPubMedGoogle Scholar
  2. Beck, D. M., & Palmer, S. E. (2002). Top-down influences on perceptual grouping. Journal of Experimental Psychology: Human Perception and Performance, 28, 1071–1084. doi: 10.1037/0096-1523.28.5.1071 PubMedGoogle Scholar
  3. Blake, R., & Yang, Y. (1997). Spatial and temporal coherence in perceptual binding. Proceedings of the National Academy of Sciences, 94, 7115–7119. doi: 10.1073/pnas.94.13.7115 CrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  5. Brooks, J. L. (2015). Traditional and new principles of perceptual grouping. In J. Wagemans (Ed.), Oxford Handbook of perceptual organization (pp. 1–31). Oxford: Oxford University Press.Google Scholar
  6. Claessens, P. M. E., & Wagemans, J. (2005). Perceptual grouping in Gabor lattices: Proximity and alignment. Perception & Psychophysics, 67, 1446–1459. doi: 10.3758/BF03193649 CrossRefGoogle Scholar
  7. Claessens, P. M. E., & Wagemans, J. (2008). A Bayesian framework for cue integration in multistable grouping: Proximity, collinearity, and orientation priors in zigzag lattices. Journal of Vision, 8(7), 33.1–33.23. doi: 10.1167/8.7.33 CrossRefGoogle Scholar
  8. Flanagan, P., Cavanagh, P., & Favreau, O. E. (1990). Independent orientation-selective mechanisms for the cardinal directions of colour space. Vision Research, 30, 769–778. doi: 10.1016/0042-6989(90)90102-Q CrossRefPubMedGoogle Scholar
  9. Gibson, J. J., & Radner, M. (1937). Adaptation, after-effect and constrast in the perception of tilted lines. Journal of Experimental Psychology, 20, 453–467. doi: 10.1037/h0059826 CrossRefGoogle Scholar
  10. Grünbaum, B., & Shephard, G. C. (1987). Tilings and patterns. New York: WH Freeman.Google Scholar
  11. He, S., & MacLeod, D. I. A. (2001). Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature, 411, 473–476. doi: 10.1038/35078072 CrossRefPubMedGoogle Scholar
  12. Held, R., & Shattuck, S. R. (1971). Color- and edge-sensitive channels in the human visual system: Tuning for orientation. Science, 174, 314–316.CrossRefPubMedGoogle Scholar
  13. Hochberg, J., & McAlister, E. (1953). A quantitative approach to figural “goodness.”. Journal of Experimental Psychology, 46, 361–364. doi: 10.1037/h0055809 CrossRefPubMedGoogle Scholar
  14. Kosovicheva, A. A., Maus, G. W., Anstis, S., Cavanagh, P., Tse, P. U., & Whitney, D. (2012). The motion-induced shift in the perceived location of a grating also shifts its aftereffect. Journal of Vision, 12(8), 1–14. doi: 10.1167/12.8.7 CrossRefGoogle Scholar
  15. Kubovy, M., Holcombe, A. O., & Wagemans, J. (1998). On the lawfulness of grouping by proximity. Cognitive Psychology, 35, 71–98. doi: 10.1006/cogp.1997.0673 CrossRefPubMedGoogle Scholar
  16. Kubovy, M., & Van den Berg, M. (2008). The whole is equal to the sum of its parts: A probabilistic model of grouping by proximity and similarity in regular patterns. Psychological Review, 115, 131–154. doi: 10.1037/0033-295X.115.1.131 CrossRefPubMedGoogle Scholar
  17. Kubovy, M., & Wagemans, J. (1995). Grouping by proximity and multistability in dot lattices: A quantitative Gestalt theory. Psychological Science, 6, 225–234. doi: 10.1111/j.1467-9280.1995.tb00597.x CrossRefGoogle Scholar
  18. Lee, S.-H., & Blake, R. (1999). Visual form created solely from temporal structure. Science, 284, 1165–1168. doi: 10.1126/science.284.5417.1165 CrossRefPubMedGoogle Scholar
  19. Lovegrove, W. J., & Over, R. (1973). Colour selectivity in orientation masking and aftereffect. Vision Research, 13, 895–901. doi: 10.1016/0042-6989(73)90069-2 CrossRefPubMedGoogle Scholar
  20. Oyama, T. (1961). Perceptual grouping as a function of proximity. Perceptual and Motor Skills, 13, 305–306. doi: 10.2466/pms.1961.13.3.305 CrossRefGoogle Scholar
  21. Oyama, T., Simizu, M., & Tozawa, J. (1999). Effects of similarity on apparent motion and perceptual grouping. Perception, 28, 739–748. doi: 10.1068/p2799 CrossRefPubMedGoogle Scholar
  22. Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24, 436–447. doi: 10.1016/0010-0285(92)90014-S CrossRefPubMedGoogle Scholar
  23. Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. Perception & Psychophysics, 69, 68–78. doi: 10.3758/BF03194454 CrossRefGoogle Scholar
  24. Palmer, S. E., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review, 1, 29–55. doi: 10.3758/BF03200760 CrossRefGoogle Scholar
  25. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 CrossRefPubMedGoogle Scholar
  26. Quinlan, P. T., & Wilton, R. N. (1998). Grouping by proximity or similarity? Competition between the Gestalt principles in vision. Perception, 27, 417–430. doi: 10.1068/p270417 CrossRefPubMedGoogle Scholar
  27. Rush, G. P. (1937). Visual grouping in relation to age (Monograph). Archives of Psychology, 31(Whole No. 217).Google Scholar
  28. Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138, 1172–1217. doi: 10.1037/a0029333 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wertheimer, M. (1922). Untersuchungen zur Lehre von der Gestalt: I. Prinzipielle Bemerkungen [Investigations in Gestalt science: I. Fundamental remarks]. Psychologische Forschung, 1, 47–58.CrossRefGoogle Scholar
  30. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt: II [Investigations in Gestalt science: II]. Psychologische Forschung, 4, 301–350. doi: 10.1007/BF00410640 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations