Behavior Research Methods

, Volume 50, Issue 2, pp 662–672 | Cite as

The Montreal Protocol for Identification of Amusia

  • D. T. Vuvan
  • S. Paquette
  • G. Mignault Goulet
  • I. Royal
  • M. Felezeu
  • I. Peretz
Article

Abstract

The Montreal Battery for the Evaluation of Amusia (MBEA; Peretz, Champod, & Hyde Annals of the New York Academy of Sciences, 999, 58–75, 2003) is an empirically grounded quantitative tool that is widely used to identify individuals with congenital amusia. The use of such a standardized measure ensures that the individuals tested will conform to a specific neuropsychological profile, allowing for comparisons across studies and research groups. Recently, a number of researchers have published credible critiques of the usefulness of the MBEA as a diagnostic tool for amusia. Here we argue that the MBEA and its online counterpart, the AMUSIA tests (Peretz et al. Music Perception, 25, 331–343, 2008), should be considered steps in a screening process for amusia, rather than standalone diagnostic tools. The goal of this article is to present, in detailed and easily replicable format, the full protocol through which congenital amusics should be identified. In providing information that has often gone unreported in published articles, we aim to clarify the strengths and limitations of the MBEA and to make recommendations for its continued use by the research community as part of the Montreal Protocol for Identification of Amusia.

Keywords

Amusia MBEA Accuracy d-Prime Standardized protocol Diagnosis 

Notes

Author note

The authors thank Nathalie Gosselin and Marina Dallongeville for their help with data collection, Joël Paquette and Marielle Saucier for their help with data processing, Peer Herholz for his work digitizing the MBEA, and our dedicated participants, without whom this research would not have been possible. This research was financially supported by a grant from the Canada Research Chair program to I.P., a grant from the Natural Sciences and Engineering Research Council of Canada to I.P., a grant from Fonds de Recherche Nature et Technologies Quebec to D.T.V., and grants from the Canadian Institutes of Health Research to I.P., S.P., and G.M.G.

References

  1. Albouy, P., Mattout, J., Bouet, R., Maby, E., Sanchez, G., Aguera, P.-E., . . . Caclin, A. (2013). Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex. Brain, 136, 1639–1661. doi: 10.1093/brain/awt082
  2. Albouy, P., Schulze, K., Caclin, A., & Tillmann, B. (2013). Does tonality boost short-term memory in congenital amusia? Brain Research, 1537, 224–232. doi: 10.1016/j.brainres.2013.09.003
  3. Anderson, S., Himonides, E., Wise, K., Welch, G., & Stewart, L. (2012). Is there potential for learning in amusia? A study of the effect of singing intervention in congenital amusia. Annals of the New York Academy of Sciences, 1252, 345–353. doi: 10.1111/j.1749-6632.2011.06404.x
  4. Aram, D. M., Morris, R., & Hall, N. E. (1993). Clinical and research congruence in identifying children with specific language impairment. Journal of Speech, Language, and Hearing Research, 36, 580–591. doi: 10.1044/jshr.3603.580 CrossRefGoogle Scholar
  5. Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain, 125, 238–251. doi: 10.1093/brain/awf028 CrossRefPubMedGoogle Scholar
  6. Bishop, D. V., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: Same or different? Psychological Bulletin, 130, 858–886. doi: 10.1037/0033-2909.130.6.858 CrossRefPubMedGoogle Scholar
  7. Bowles, D. C., McKone, E., Dawel, A., Duchaine, B., Palermo, R., Schmalzl, L., . . . Yovel, G. (2009). Diagnosing prosopagnosia: Effects of ageing, sex, and participant–stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive Neuropsychology, 26, 423–455. doi: 10.1080/02643290903343149
  8. Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: Identification and intervention. ZDM Mathematics Education, 42, 527–539. doi: 10.1007/s11858-010-0267-4
  9. Chen, J. L., Kumar, S., Williamson, V. J., Scholz, J., Griffiths, T. D., & Stewart, L. (2015). Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm. Frontiers in Psychology, 6, 9. doi: 10.3389/fpsyg.2015.00009 PubMedPubMedCentralGoogle Scholar
  10. Dalla Bella, S., Giguère, J.-F., & Peretz, I. (2009). Singing in congenital amusia. Journal of the Acoustical Society of America, 126, 414–424. doi: 10.1121/1.3132504 CrossRefPubMedGoogle Scholar
  11. Duchaine, B., & Nakayama, K. (2006). The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia, 44, 576–585. doi: 10.1016/j.neuropsychologia.2005.07.001 CrossRefPubMedGoogle Scholar
  12. Falconer, T. (2016). Bad Singer: The Surprising Science of Tone Deafness and How We Hear Music. Toronto, ON: House of Anansi Press, Inc.Google Scholar
  13. Foxton, J. M., Dean, J. L., Gee, R., Peretz, I., & Griffiths, T. D. (2004). Characterization of deficits in pitch perception underlying 'tone deafness’. Brain, 127, 801–810. doi: 10.1093/brain/awh105 CrossRefPubMedGoogle Scholar
  14. Garland, L. H. (1949). On the scientific evaluation of diagnostic procedures: Presidential address at the Thirty-Fourth Annual Meeting of the Radiological Society of North America. Radiology, 52, 309–328. doi: 10.1148/52.3.309 CrossRefPubMedGoogle Scholar
  15. Gosselin, N., Jolicœur, P., & Peretz, I. (2009). Impaired memory for pitch in congenital amusia. Annals of the New York Academy of Sciences, 1169, 270–272. doi: 10.1111/j.1749-6632.2009.04762.x CrossRefPubMedGoogle Scholar
  16. Gosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in congenital amusia. Cortex, 71, 171–182. doi: 10.1111/j.1749-6632.2009.04762.x CrossRefPubMedGoogle Scholar
  17. Henry, M. J., & McAuley, J. D. (2010). On the prevalence of congenital amusia. Music Perception, 27, 413–418. doi: 10.1525/mp.2010.27.5.413 CrossRefGoogle Scholar
  18. Henry, M. J., & McAuley, J. D. (2012). Failure to apply signal detection theory to the Montreal Battery of Evaluation of Amusia may misdiagnose amusia. Music Perception, 30, 480–496. doi: 10.1525/mp.2013.30.5.480
  19. Huang, W.-T., Nan, Y., Dong, Q., & Liu, C. (2015). Just-noticeable difference of tone pitch contour change for Mandarin congenital amusics. The Journal of the Acoustical Society of America, 138, EL99–EL104. doi: 10.1121/1.4923268 CrossRefPubMedGoogle Scholar
  20. Hutchins, S., Gosselin, N., & Peretz, I. (2010). Identification of changes along a continuum of speech intonation is impaired in congenital amusia. Frontiers in Psychology, 1, 236. doi: 10.3389/fpsyg.2010.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hutchins, S., & Peretz, I. (2012). Amusics can imitate what they cannot discriminate. Brain and Language, 123, 234–239. doi: 10.3389/fpsyg.2010.00236 CrossRefPubMedGoogle Scholar
  22. Hutchins, S., & Peretz, I. (2013). Vocal pitch shift in congenital amusia (pitch deafness). Brain and Language, 125, 106–117. doi: 10.1016/j.bandl.2013.01.011 CrossRefPubMedGoogle Scholar
  23. Hutchins, S., Zarate, J. M., Zatorre, R. J., & Peretz, I. (2010). An acoustical study of vocal pitch matching in congenital amusia. The Journal of the Acoustical Society of America, 127, 504–512. doi: 10.1121/1.3270391 CrossRefPubMedGoogle Scholar
  24. Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: When less is better than more. The Journal of Neuroscience, 27, 13028–13032. doi: 10.1523/JNEUROSCI.3039-07.2007 CrossRefPubMedGoogle Scholar
  25. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360. doi: 10.1111/j.0956-7976.2004.00683.x CrossRefPubMedGoogle Scholar
  26. Hyde, K. L., & Peretz, I. (2005). Congenital amusia: Impaired musical pitch but intact musical time. In J. Syka & M. M. Merzenich (Eds.), Plasticity and signal representation in the auditory system. New York: Springer.Google Scholar
  27. Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., & Peretz, I. (2006). Morphometry of the amusic brain: A two-site study. Brain, 129, 2562–2570. doi: 10.1093/brain/awl204 CrossRefPubMedGoogle Scholar
  28. Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence of an abnormal neural network for pitch processing in congenital amusia. Cerebral Cortex, 21, 292–299. doi: 10.1093/cercor/bhq094
  29. Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia results in abnormal brain activity following inappropriate intonation during speech comprehension. PLoS ONE, 7, e41411. doi: 10.1371/journal.pone.0041411 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48, 2630–2639. doi: 10.1371/journal.pone.0041411
  31. Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2011). Fine-grained pitch discrimination in congenital amusics with Mandarin Chinese. Music Perception, 28, 519–526. doi: 10.1525/mp.2011.28.5.519 CrossRefGoogle Scholar
  32. Jiang, C., Lim, V. K., Wang, H., & Hamm, J. P. (2013). Difficulties with pitch discrimination influences pitch memory performance: Evidence from congenital amusia. PLoS ONE, 8, e79216. doi: 10.1371/journal.pone.0079216 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G., & Peretz, I. (2012). Congenital amusia in childhood: a case study. Cortex, 48, 683–688. doi: 10.1016/j.cortex.2011.02.018 CrossRefPubMedGoogle Scholar
  34. Liu, F., Jiang, C., Thompson, W. F., Xu, Y., Yang, Y., & Stewart, L. (2012). The mechanism of speech processing in congenital amusia: Evidence from Mandarin speakers. PLoS ONE, 7, e30374. doi: 10.1371/journal.pone.0030374 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu, F., Patel, A. D., Fourcin, A., & Stewart, L. (2010). Intonation processing in congenital amusia: Discrimination, identification and imitation. Brain, 133, 1682–1693. doi: 10.1093/brain/awq089 CrossRefPubMedGoogle Scholar
  36. Liu, F., Xu, Y., Patel, A. D., Francart, T., & Jiang, C. (2012). Differential recognition of pitch patterns in discrete and gliding stimuli in congenital amusia: Evidence from Mandarin speakers. Brain and Cognition, 79, 209–215. doi: 10.1016/j.bandc.2012.03.008 CrossRefPubMedGoogle Scholar
  37. Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? The Journal of Neuroscience, 29, 10215–10220. doi: 10.1523/JNEUROSCI.1701-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Loui, P., Guenther, F. H., Mathys, C., & Schlaug, G. (2008). Action–perception mismatch in tone-deafness. Current Biology, 18, R331–R332. doi: 10.1016/j.cub.2008.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Loui, P., Hohmann, A., & Schlaug, G. (2010). Inducing disorders in pitch perception and production: A reverse-engineering approach. Proceedings of Meetings on Acoustics, 9, 050002. doi: 10.1121/1.3431713 CrossRefGoogle Scholar
  40. Loui, P., & Schlaug, G. (2012). Impaired learning of event frequencies in tone deafness. Annals of the New York Academy of Sciences, 1252, 354–360. doi: 10.1111/j.1749-6632.2011.06401.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marin, M. M., Gingras, B., & Stewart, L. (2012). Perception of musical timbre in congenital amusia: Categorization, discrimination and short-term memory. Neuropsychologia, 50, 367–378. doi: 10.1016/j.neuropsychologia.2011.12.006 CrossRefPubMedGoogle Scholar
  42. Marin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207–220. doi: 10.1016/j.neuropsychologia.2015.10.004 CrossRefPubMedGoogle Scholar
  43. Mathys, C., Loui, P., Zheng, X., & Schlaug, G. (2010). Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Frontiers in Psychology, 1, 193. doi: 10.3389/fpsyg.2010.00193 CrossRefPubMedPubMedCentralGoogle Scholar
  44. McDonald, C., & Stewart, L. (2008). Uses and functions of music in congenital amusia. Music Perception, 25, 345–355. doi: 10.1525/mp.2008.25.4.345 CrossRefGoogle Scholar
  45. Mignault Goulet, G., Moreau, P., Robitaille, N., & Peretz, I. (2012). Congenital amusia persists in the developing brain after daily music listening. PLoS ONE, 7, e36860. doi: 10.1371/journal.pone.0036860 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moreau, P., Jolicœur, P., & Peretz, I. (2013). Pitch discrimination without awareness in congenital amusia: evidence from event-related potentials. Brain and Cognition, 81, 337–344. doi: 10.1371/journal.pone.0036860 CrossRefPubMedGoogle Scholar
  47. Nan, Y., Sun, Y., & Peretz, I. (2010). Congenital amusia in speakers of a tone language: association with lexical tone agnosia. Brain, 133, 2635–2642. doi: 10.1093/brain/awq178 CrossRefPubMedGoogle Scholar
  48. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., . . . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699. doi: 10.1111/j.1532-5415.2005.53221.x
  49. Omigie, D., Müllensiefen, D., & Stewart, L. (2012). The experience of music in congenital amusia. Music Perception, 30, 1–18. doi: 10.1525/mp.2012.30.1.1 CrossRefGoogle Scholar
  50. Omigie, D., Pearce, M. T., Williamson, V. J., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51, 1749–1762. doi: 10.1016/j.neuropsychologia.2013.05.010 CrossRefPubMedGoogle Scholar
  51. Omigie, D., Pearce, M. T., & Stewart, L. (2012). Tracking of pitch probabilities in congenital amusia. Neuropsychologia, 50, 1483–1493. doi: 10.1016/j.neuropsychologia.2012.02.034 CrossRefPubMedGoogle Scholar
  52. Omigie, D., & Stewart, L. (2011). Preserved statistical learning of tonal and linguistic material in congenital amusia. Frontiers in Psychology, 2, 1–11. doi: 10.3389/fpsyg.2011.00109 CrossRefGoogle Scholar
  53. Patel, A. D., Wong, M., Foxton, J., Lochy, A., & Peretz, I. (2008). Speech intonation perception deficits in musical tone deafness (congenital amusia). Music Perception, 25, 357–368. doi: 10.1525/mp.2008.25.4.357 CrossRefGoogle Scholar
  54. Peretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20, 857–867. doi: 10.1016/j.tics.2016.09.002 CrossRefPubMedGoogle Scholar
  55. Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132, 1277–1286. doi: 10.1093/brain/awp055 CrossRefPubMedGoogle Scholar
  56. Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders. Annals of the New York Academy of Sciences, 999, 58–75. doi: 10.1196/annals.1284.006 CrossRefPubMedGoogle Scholar
  57. Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6, 688–691. doi: 10.1038/nn1083 CrossRefPubMedGoogle Scholar
  58. Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The genetics of congenital amusia (tone deafness): a family aggregation study. The American Journal of Human Genetics, 81, 582–588. doi: 10.1086/521337 CrossRefPubMedGoogle Scholar
  59. Peretz, I., Gosselin, N., Nan, Y., Caron-Caplette, E., Trehub, S. E., & Béland, R. (2013). A novel tool for evaluating children’s musical abilities across age and culture. Frontiers in Systems Neuroscience, 7, 30. doi: 10.3389/fnsys.2013.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Peretz, I., Gosselin, N., Tillmann, B., Cuddy, L. L., Gagnon, B., Trimmer, C. G., . . . Bouchard, B. (2008). On-line identification of congenital amusia. Music Perception, 25, 331–343. doi: 10.1525/mp.2008.25.4.331
  61. Peretz, I., & Vuvan, D. T. (2017). Prevalence of congenital amusia. European Journal of Human Genetics. doi: 10.1038/ejhg.2017.15
  62. Pfeifer, J., & Hamann, S. (2015). Revising the diagnosis of congenital amusia with the Montreal Battery of Evaluation of Amusia. Frontiers in Human Neuroscience, 9, 161. doi: 10.3389/fnhum.2015.00161 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pfeuty, M., & Peretz, I. (2010). Abnormal pitch—time interference in congenital amusia: Evidence from an implicit test. Attention, Perception, & Psychophysics, 72, 763–774. doi: 10.3758/APP.72.3.763 CrossRefGoogle Scholar
  64. Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49, 961–969. doi: 10.1016/j.neuropsychologia.2011.02.002 CrossRefPubMedGoogle Scholar
  65. Phillips-Silver, J., Toiviainen, P., Gosselin, N., & Peretz, I. (2013). Amusic does not mean unmusical: Beat perception and synchronization ability despite pitch deafness. Cognitive Neuropsychology, 30, 311–331. doi: 10.1080/02643294.2013.863183 CrossRefPubMedGoogle Scholar
  66. Royal, I., Lidji, P., Théoret, H., Russo, F. A., & Peretz, I. (2015). Excitability of the motor system: A transcranial magnetic stimulation study on singing and speaking. Neuropsychologia, 75, 525–532. doi: 10.3758/APP.72.3.763 CrossRefPubMedGoogle Scholar
  67. Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9, S58–S64. doi: 10.1007/s007870070009 CrossRefGoogle Scholar
  68. Thompson, W. F., Marin, M. M., & Stewart, L. (2012). Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. Proceedings of the National Academy of Sciences, 109, 19027–19032. doi: 10.1073/pnas.1210344109
  69. Tillmann, B., Burnham, D., Nguyen, S., Grimault, N., Gosselin, N., & Peretz, I. (2011). Congenital amusia (or tone-deafness) interferes with pitch processing in tone languages. Frontiers in Psychology, 2. doi: 10.3389/fpsyg.2011.00120
  70. Tillmann, B., Rusconi, E., Traube, C., Butterworth, B., Umiltà, C., & Peretz, I. (2011). Fine-grained pitch processing of music and speech in congenital amusia. The Journal of the Acoustical Society of America, 130, 4089–4096. doi: 10.1121/1.3658447 CrossRefPubMedGoogle Scholar
  71. Tillmann, B., Schulze, K., & Foxton, J. M. (2009). Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds. Brain and Cognition, 71, 259–264. doi: 10.1016/j.bandc.2009.08.003 CrossRefPubMedGoogle Scholar
  72. Tomblin, J. B., Records, N. L., & Zhang, X. (1996). A system for the diagnosis of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 39, 1284–1294. doi: 10.1044/jshr.3906.1284 CrossRefGoogle Scholar
  73. Towler, J., Fisher, K., & Eimer, M. (2017). The cognitive and neural basis of developmental prosopagnosia. The Quarterly Journal of Experimental Psychology, 70, 316–344. doi: 10.1080/17470218.2016.1165263 CrossRefPubMedGoogle Scholar
  74. Tranchant, P., Vuvan, D. T., & Peretz, I. (2016). Keeping the beat: A large sample study of bouncing and clapping to music. PLoS ONE, 11, e0160178. doi: 10.1371/journal.pone.0160178 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tremblay-Champoux, A., Dalla Bella, S., Phillips-Silver, J., Lebrun, M.-A., & Peretz, I. (2010). Singing proficiency in congenital amusia: Imitation helps. Cognitive Neuropsychology, 27, 463–476. doi: 10.1080/02643294.2011.567258 CrossRefPubMedGoogle Scholar
  76. Tulsky, D., Zhu, J., & Ledbetter, M. (1997). Wechsler Adult Intelligence Scale and Wechsler Memory Scale technical manual. San Antonio, TX: Psychological Corp.Google Scholar
  77. Vuvan, D. T., Nunes-Silva, M., & Peretz, I. (2015). Meta-analytic evidence for the non-modularity of pitch processing in congenital amusia. Cortex, 69, 186–200. doi: 10.1016/j.cortex.2015.05.002 CrossRefPubMedGoogle Scholar
  78. Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale. San Antonio, TX: Psychological Corp.Google Scholar
  79. Wilbiks, J. M., Vuvan, D. T., Girard, P.-Y., Peretz, I., & Russo, F. A. (2016). Effects of vocal training in a musicophile with congenital amusia. Neurocase, 22, 526–537. doi: 10.1080/13554794.2016.1263339 CrossRefPubMedGoogle Scholar
  80. Williamson, V. J., Cocchini, G., & Stewart, L. (2011). The relationship between pitch and space in congenital amusia. Brain and Cognition, 76, 70–76. doi: 10.1016/j.bandc.2011.02.016 CrossRefPubMedGoogle Scholar
  81. Williamson, V. J., Liu, F., Peryer, G., Grierson, M., & Stewart, L. (2012). Perception and action de-coupling in congenital amusia: Sensitivity to task demands. Neuropsychologia, 50, 172–180. doi: 10.1016/j.neuropsychologia.2011.11.015 CrossRefPubMedGoogle Scholar
  82. Williamson, V. J., McDonald, C., Deutsch, D., Griffiths, T. D., & Stewart, L. (2010). Faster decline of pitch memory over time in congenital amusia. Advances in Cognitive Psychology, 6, 15–22. doi: 10.2478/v10053-008-0073-5 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Williamson, V. J., & Stewart, L. (2010). Memory for pitch in congenital amusia: Beyond a fine-grained pitch discrimination problem. Memory, 18, 657–669. doi: 10.1080/09658211.2010.501339 CrossRefPubMedGoogle Scholar
  84. Zendel, B. R., Lagrois, M.-É., Robitaille, N., & Peretz, I. (2015). Attending to pitch information inhibits processing of pitch information: The curious case of amusia. The  Journal of Neuroscience, 35, 3815–3824. doi: 10.1523/JNEUROSCI.3766-14.2015

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • D. T. Vuvan
    • 1
    • 2
  • S. Paquette
    • 2
    • 3
  • G. Mignault Goulet
    • 2
    • 4
  • I. Royal
    • 2
    • 4
  • M. Felezeu
    • 2
    • 4
  • I. Peretz
    • 2
    • 4
  1. 1.Psychology DepartmentSkidmore CollegeSaratoga SpringsUSA
  2. 2.International Laboratory for Brain, Music, and Sound ResearchMontrealCanada
  3. 3.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  4. 4.Department of PsychologyUniversity of MontrealMontrealCanada

Personalised recommendations