Guided Search 6.0: An updated model of visual search

Abstract

This paper describes Guided Search 6.0 (GS6), a revised model of visual search. When we encounter a scene, we can see something everywhere. However, we cannot recognize more than a few items at a time. Attention is used to select items so that their features can be “bound” into recognizable objects. Attention is “guided” so that items can be processed in an intelligent order. In GS6, this guidance comes from five sources of preattentive information: (1) top-down and (2) bottom-up feature guidance, (3) prior history (e.g., priming), (4) reward, and (5) scene syntax and semantics. These sources are combined into a spatial “priority map,” a dynamic attentional landscape that evolves over the course of search. Selective attention is guided to the most active location in the priority map approximately 20 times per second. Guidance will not be uniform across the visual field. It will favor items near the point of fixation. Three types of functional visual field (FVFs) describe the nature of these foveal biases. There is a resolution FVF, an FVF governing exploratory eye movements, and an FVF governing covert deployments of attention. To be identified as targets or rejected as distractors, items must be compared to target templates held in memory. The binding and recognition of an attended object is modeled as a diffusion process taking > 150 ms/item. Since selection occurs more frequently than that, it follows that multiple items are undergoing recognition at the same time, though asynchronously, making GS6 a hybrid of serial and parallel processes. In GS6, if a target is not found, search terminates when an accumulating quitting signal reaches a threshold. Setting of that threshold is adaptive, allowing feedback about performance to shape subsequent searches. Simulation shows that the combination of asynchronous diffusion and a quitting signal can produce the basic patterns of response time and error data from a range of search experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367-10371.

    Article  Google Scholar 

  2. Anderson, N. C., Ort, E., Kruijne, W., Meeter, M., & Donk, M. (2015). It depends on when you look at it: Salience influences eye movements in natural scene viewing and search early in time. Journal of Vision, 15(5), 9-9. https://doi.org/10.1167/15.5.9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443. https://doi.org/10.1016/j.tics.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bahle, B., Thayer, D. D., Mordkoff, J. T., & Hollingworth, A. (2019). The architecture of working memory: Features from multiple remembered objects produce parallel, coactive guidance of attention in visual search. J Exp Psychol Gen. https://doi.org/10.1037/xge0000694

  5. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. J. Optical Society of America - A, 5(12), 2210-2219.

    Article  Google Scholar 

  6. Bauer, B., Jolicœur, P., & Cowan, W. B. (1996). Visual search for colour targets that are or are not linearly-separable from distractors. Vision Research, 36(10), 1439-1466.

    PubMed  Article  PubMed Central  Google Scholar 

  7. Bauer, B., Jolicoeur, P., & Cowan, W. B. (1998). The linear separability effect in color visual search: Ruling out the additive color hypothesis. Perception and Psychophysics, 60(6), 1083-1093.

    PubMed  Article  PubMed Central  Google Scholar 

  8. Becker, S. I. (2010). The role of target-distractor relationships in guiding attention and the eyes in visual search. J Exp Psychol Gen, 139(2), 247-265. https://doi.org/10.1037/a0018808

    Article  PubMed  PubMed Central  Google Scholar 

  9. Becker, S. I., Harris, A. M., York, A., & Choi, J. (2017). Conjunction Search is Relational: Behavioral and Electrophysiological Evidence. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1828-1842.

    PubMed  PubMed Central  Google Scholar 

  10. Berbaum, K. S., Franken, E. A., Jr., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., et al. (1990). Satisfaction of search in diagnostic radiology. Invest Radiol, 25(2), 133-140.

    PubMed  Article  PubMed Central  Google Scholar 

  11. Berbaum, K. S., Krupinski, E. A., Schartz, K. M., Caldwell, R. T., Madsen, M. T., Hur, S., et al. (2015). Satisfaction of Search in Chest Radiography 2015. Academic Radiology. https://doi.org/10.1016/j.acra.2015.07.011

  12. Berlin, L. (2007). Radiologic Errors and Malpractice: A Blurry Distinction. American Journal of Roentgenology, 189(3), 517-522. https://doi.org/10.2214/ajr.07.2209

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biederman, I. (1977). On processing information from a glance at a scene: some implications for a syntax and semantics of visual processing. Paper presented at the Proceedings of the ACM/SIGGRAPH Workshop on User-oriented Design of Interactive Graphics Systems, Pittsburgh, PA.

  14. Biggs, A. T. (2017). Getting satisfied with “satisfaction of search”: How to measure errors during multiple-target visual search. Atten Percept Psychophys, 79(5), 1352-1365.

    PubMed  Article  PubMed Central  Google Scholar 

  15. Bisley, J. W., & Mirpour, K. (2019). The neural instantiation of a priority map. Current Opinion in Psychology, 29, 108-112. https://doi.org/10.1016/j.copsyc.2019.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boettcher, S. E. P., Draschkow, D., Dienhart, E., & Võ, M. L. H. (2018). Anchoring visual search in scenes: Assessing the role of anchor objects on eye movements during visual search. Journal of Vision, 18(13), 11-11. https://doi.org/10.1167/18.13.11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bogacz, R., Usher, M., Zhang, J., & McClelland, J. L. (2007). Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philos Trans R Soc Lond B Biol Sci, 362(1485), 1655-1670. https://doi.org/10.1098/rstb.2007.2059

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bravo, M., & Nakayama, K. (1992). The role of attention in different visual search tasks. Perception and Psychophysics, 51, 465-472.

    PubMed  Article  PubMed Central  Google Scholar 

  19. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153-178.

    PubMed  Article  PubMed Central  Google Scholar 

  20. Brügger, A., Richter, K.-F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: Principles and Implications, 4(1), 5. https://doi.org/10.1186/s41235-019-0156-5

    Article  Google Scholar 

  21. Buetti, S., Cronin, D. A., Madison, A. M., Wang, Z., & Lleras, A. (2016). Towards a Better Understanding of Parallel Visual Processing in Human Vision: Evidence for Exhaustive Analysis of Visual Information. Journal of Experimental Psychology: General, 145(6), 672-707. https://doi.org/10.1037/xge0000163

    Article  Google Scholar 

  22. Buetti, S., Shao, Y., Xu, J., & Lleras, A. (2020). Re-examining the linear separability effect in visual search for oriented targets. VSS 2020 Poster.

  23. Buetti, S., Xu, J., & Lleras, A. (2019). Predicting how color and shape combine in the human visual system to direct attention. Scientific Reports, 9(1), 20258. https://doi.org/10.1038/s41598-019-56238-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burr, D., & Ross, J. (2008). A visual sense of number. Curr Biol, 18(6), 425-428.

    PubMed  Article  PubMed Central  Google Scholar 

  25. Buschman, T. J., & Miller, E. K. (2009). Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations. Neuron, 63, 386–396.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Cain, M. S., Adamo, S. H., & Mitroff, S. R. (2013). A taxonomy of errors in multiple-target visual search. Visual Cognition, 21(7), 899-921. https://doi.org/10.1080/13506285.2013.843627

    Article  Google Scholar 

  27. Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. The Journal of neuroscience: the official journal of the Society for Neuroscience, 31(25), 9315-9322. https://doi.org/10.1523/JNEUROSCI.1097-11.2011

    Article  Google Scholar 

  28. Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception and Psychophysics, 57(8), 1241-1261.

    PubMed  Article  PubMed Central  Google Scholar 

  29. Carrasco, M., & Frieder, K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search. Vision Research, 37(1), 63-82.

    PubMed  Article  PubMed Central  Google Scholar 

  30. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129-136.

    PubMed  Article  PubMed Central  Google Scholar 

  31. Cho, J., & Chong, S. C. (2019). Search termination when the target is absent: The prevalence of coarse processing and its intertrial influence. Journal of Experimental Psychology: Human Perception and Performance., on line. https://doi.org/10.1037/xhp0000686

  32. Chun, M., & Jiang, Y. (1998). Contextual cuing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28-71.

    PubMed  Article  PubMed Central  Google Scholar 

  33. Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4, 170-178.

    PubMed  Article  PubMed Central  Google Scholar 

  34. Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30, 39-78.

    PubMed  Article  PubMed Central  Google Scholar 

  35. Conci, M., Deichsel, C., Müller, H. J., & Töllner, T. (2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 1-10. https://doi.org/10.1080/13506285.2019.1581316

  36. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull, 104(2), 163-191.

    PubMed  Article  PubMed Central  Google Scholar 

  37. Cowan, N. (1995). Attention and Memory: An integrated framework. New York: Oxford U press.

    Google Scholar 

  38. Cunningham, C. A., & Egeth, H. E. (2016). Taming the White Bear: Initial Costs and Eventual Benefits of Distractor Inhibition. Psychological Science, 27(4), 476-485. https://doi.org/10.1177/0956797615626564

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. J Exp Psychol Gen, 143(4), 1585-1599. https://doi.org/10.1037/a0036313

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Vries, J. P., Van der Stigchel, S., Hooge, I. T. C., & Verstraten, F. A. J. (2017). The Lifetime of Salience Extends Beyond the Initial Saccade. Perception, 0301006617735726. https://doi.org/10.1177/0301006617735726

  41. Di Lollo, V. (2012). The feature- binding problem is an ill-posed problem Trends Cogn Sci, 16(6), 317-321.

    PubMed  Article  PubMed Central  Google Scholar 

  42. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129(4), 481-507.

    Article  Google Scholar 

  43. Donk, M., & Theeuwes, J. (2003). Prioritizing selection of new elements: bottom-up versus top-down control. Percept Psychophys, 65(8), 1231-1242.

    PubMed  Article  PubMed Central  Google Scholar 

  44. Donk, M., & van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19(7), 733-739.

    PubMed  Article  PubMed Central  Google Scholar 

  45. Drew, T., Boettcher, S. P., & Wolfe, J. M. (2015). Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity. Psychonomic Bulletin & Review, 23(1), 201-212. https://doi.org/10.3758/s13423-015-0874-8

    Article  Google Scholar 

  46. Drew, T., Vo, M. L.-H., Olwal, A., Jacobson, F., Seltzer, S. E., & Wolfe, J. M. (2013). Scanners and drillers: Characterizing expert visual search through volumetric images. Journal of Vision, 13(10). https://doi.org/10.1167/13.10.3

  47. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.

    PubMed  Article  PubMed Central  Google Scholar 

  48. Ebner, L., Tall, M., Choudhury, K. R., Ly, D. L., Roos, J. E., Napel, S., et al. (2017). Variations in the functional visual field for detection of lung nodules on chest computed tomography: Impact of nodule size, distance, and local lung complexity. Medical Physics, 44(7), 3483-3490. https://doi.org/10.1002/mp.12277

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eckstein, M., Beutter, B., Bartroff, L., & Stone, L. (1999). Guided search vs. signal detection theory in target localization tasks. [ARVO abstract]. Investigative Ophthalmology & Visual Science, 40(4), S346.

    Google Scholar 

  50. Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdés, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience & Biobehavioral Reviews, 84(Supplement C), 72-91. https://doi.org/10.1016/j.neubiorev.2017.11.004

    Article  Google Scholar 

  51. Egeth, H., Jonides, J., & Wall, S. (1972). Parallel processing of multielement displays. Cognitive Psychology, 3, 674-698.

    Article  Google Scholar 

  52. Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. J. Exp. Psychol: Human Perception and Performance, 10, 32-39.

    Google Scholar 

  53. Einhauser, W., Spain, M., & Perona, P. (2008). Objects predict fixations better than early saliency. Journal of Vision, 8(14), 1-26.

    PubMed  Article  PubMed Central  Google Scholar 

  54. Evans, K. K., & Treisman, A. (2005). Perception of objects in natural scenes: is it really attention free? J Exp Psychol Hum Percept Perform, 31(6), 1476-1492.

    PubMed  Article  PubMed Central  Google Scholar 

  55. Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. [journal article]. Psychonomic Bulletin & Review, 25(2), 514-538. https://doi.org/10.3758/s13423-017-1380-y

    Article  Google Scholar 

  56. Folk, C. L., & Gibson, B. S. (2001). Attraction, distraction and action: multiple perspectives on attentional capture. Amsterdam; New York:: Elsevier / (Advances in psychology).

    Google Scholar 

  57. Foster, D. H., & Ward, P. A. (1991a). Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proceedings of the Royal Society (London B), 243, 75-81.

    Article  Google Scholar 

  58. Foster, D. H., & Ward, P. A. (1991b). Horizontal-vertical filters in early vision predict anomalous line-orientation frequencies. Proceedings of the Royal Society (London B), 243, 83-86.

    Article  Google Scholar 

  59. Foster, D. H., & Westland, S. (1998). Multiple groups of orientation-selective visual mechanisms underlying rapid oriented-line detection. Proc. R. Soc. Lond. B, 265, 1605-1613.

    Article  Google Scholar 

  60. Fougnie, D., Cormiea, S. M., Zhang, J., Alvarez, G. A., & Wolfe, J. M. (2015). Winter is coming: How humans forage in a temporally structured environment. Journal of Vision, 15(11), 1-1. https://doi.org/10.1167/15.11.1

    Article  PubMed  PubMed Central  Google Scholar 

  61. Frey, A., & Bosse, M.-L. (2018). Perceptual span, visual span, and visual attention span: Three potential ways to quantify limits on visual processing during reading. Visual Cognition, 26(6), 412-429. https://doi.org/10.1080/13506285.2018.1472163

    Article  Google Scholar 

  62. Friedman-Hill, S. R., & Wolfe, J. M. (1995). Second-order parallel processing: Visual search for the odd item in a subset. J. Experimental Psychology: Human Perception and Performance, 21(3), 531-551.

    Google Scholar 

  63. Gabbay, C., Zivony, A., & Lamy, D. (2019). Splitting the attentional spotlight? Evidence from attentional capture by successive events. Visual Cognition, 1-19. https://doi.org/10.1080/13506285.2019.1617377

  64. Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993-2007. https://doi.org/10.1037/xhp0000430

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gibson, B. S., Li, L., Skow, E., Brown, K., & Cooke, L. (2000). Searching for one versus two identical targets: When visual search has a memory. Psychological Science, 11(4), 324-327.

    PubMed  Article  PubMed Central  Google Scholar 

  66. Gilchrist, I. D., & Harvey, M. (2006). Evidence for a systematic component within scanpaths in visual search. Visual Cognition, 14(5-7).

  67. Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., & Wolfe, J. M. (2020). Efficiency and accuracy of visual search develop at different rates from early childhood through early adulthood. [journal article]. Psychonomic Bulletin & Review, 27, 504-511. https://doi.org/10.3758/s13423-020-01712-z

    Article  Google Scholar 

  68. Goddard, P., Leslie, A., Jones, A., Wakeley, C., & Kabala, J. (2001). Error in radiology. Br J Radiol, 74(886), 949-951.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Greene, M. R., & Oliva, A. (2009). The briefest of glances: the time course of natural scene understanding. Psychol Sci, 20(4), 464-472.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Grubert, A., & Eimer, M. (2018). The Time Course of Target Template Activation Processes during Preparation for Visual Search. Journal of Neuroscience, 38(44), 9527-9538. https://doi.org/10.1523/jneurosci.0409-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60, 29-38. https://doi.org/10.1016/j.neuropsychologia.2014.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., Brancatelli, G., et al. (2003). Prevalence effect in a laboratory environment. Radiology, 228(1), 10-14. https://doi.org/10.1148/radiol.2281020709

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hadnett-Hunter, J., Nicolaou, G., O’neill, E., & Proulx, M. (2019). The Effect of Task on Visual Attention in Interactive Virtual Environments. ACM Trans. Appl. Percept., 16(3), 1-17. https://doi.org/10.1145/3352763

    Article  Google Scholar 

  74. Harris, A., Becker, S., & Remington, R. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77(7), 2305-2321. https://doi.org/10.3758/s13414-015-0927-0

    Article  Google Scholar 

  75. Harris, A. M., & Remington, R. W. (2020). Late guidance resolves the search slope paradox in contextual cueing. Psychonomic Bulletin & Review, 27(6), 1300-1308. https://doi.org/10.3758/s13423-020-01788-7

    Article  Google Scholar 

  76. Heaton, R., Hummel, J. E., Lleras, A., & Buetti, S. (2020). A Computational Account of Serial and Parallel Processing in Visual Search. VSS 2020 Poster.

  77. Henderson, J. M., & Ferreira, F. (2004). Scene perception for psycholinguists. In J. M. Henderson & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 1-58). New York: Psychology Press.

    Google Scholar 

  78. Henderson, J. M., & Hayes, T. R. (2017). Meaning Guides Attention in Real-World Scenes. Nature Human Behavior, 1, 743-747. https://doi.org/10.1038/s41562-017-0208-0

    Article  Google Scholar 

  79. Hickey, C., Kaiser, D., & Peelen, M. V. (2015). Reward Guides Attention to Object Categories in Real-World Scenes. Journal of experimental psychology. General, 144(2), 264-273. https://doi.org/10.1037/a0038627

    Article  Google Scholar 

  80. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791-804.

    PubMed  Article  PubMed Central  Google Scholar 

  81. Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Atten Percept Psychophys, 71(4), 936-949. https://doi.org/10.3758/APP.71.4.936

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hong, S.-K. (2005). Human stopping strategies in multiple-target search. International Journal of Industrial Ergonomics, 35, 1-12.

    Article  Google Scholar 

  83. Hooge, I. T., Over, E. A., van Wezel, R. J., & Frens, M. A. (2005). Inhibition of return is not a foraging facilitator in saccadic search and free viewing. Vision Res, 45(14), 1901-1908.

    PubMed  Article  PubMed Central  Google Scholar 

  84. Horowitz, T. S. (2017). Prevalence in Visual Search: From the Clinic to the Lab and Back Again. Japanese Psychological Research, 59(2), 65-108. https://doi.org/10.1111/jpr.12153

    Article  Google Scholar 

  85. Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394(Aug 6), 575-577.

    PubMed  Article  PubMed Central  Google Scholar 

  86. Horowitz, T. S., & Wolfe, J. M. (2005). Visual Search: The role of memory for rejected distractors. In L. Itti, G. Rees & J. Tsotsos (Eds.), Neurobiology of attention (pp. 264-268). San Diego, CA: Academic Press / Elsevier.

    Google Scholar 

  87. Huang, L. (2020). Space of preattentive shape features. Journal of Vision, 20(4), 10-10. https://doi.org/10.1167/jov.20.4.10

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hulleman, J. (2020). Quantitative and qualitative differences in the top-down guiding attributes of visual search. J. Exp. Psychol: Human Perception and Performance, on-line. https://doi.org/10.1037/xhp0000764

  89. Hulleman, J., Lund, K., & Skarratt, P. A. (2019). Medium vs. difficult visual search: how a quantitative change in the functional visual field leads to a qualitative difference in performance. Atten Percept Psychophys, on-line first, 1-22.

  90. Hulleman, J., & Olivers, C. N. L. (2017). The impending demise of the item in visual search. Behav Brain Sci, 1-20. https://doi.org/10.1017/S0140525X15002794, e132

  91. Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863-866. https://doi.org/10.1126/science.1117593

    Article  PubMed  PubMed Central  Google Scholar 

  92. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res, 40(10-12), 1489-1506.

    PubMed  Article  PubMed Central  Google Scholar 

  93. Johnson, J. S., & Olshausen, B. A. (2003). Timecourse of neural signatures of object recognition. Journal of Vision, 3(7), 499-512.

    PubMed  Article  PubMed Central  Google Scholar 

  94. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception and Psychophysics, 43, 346-354.

    PubMed  Article  PubMed Central  Google Scholar 

  95. Kaptein, N. A., Theeuwes, J., & Van der Heijden, A. H. C. (1995). Search for a conjunctively defined target can be selectively limited to a color-defined subset of elements. J. Experimental Psychology: Human Perception and Performance, 21(5), 1053-1069.

    Google Scholar 

  96. Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430-431.

    PubMed  Article  PubMed Central  Google Scholar 

  97. Klein, R. M. (2000). Inhibition of return. Trends Cogn Sci, 4(4), 138-147.

    PubMed  Article  PubMed Central  Google Scholar 

  98. Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10(July), 346-352.

    Article  Google Scholar 

  99. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4), 219-227.

    PubMed  PubMed Central  Google Scholar 

  100. Kong, G., Alais, D., & Van der Berg, E. (2016). An Investigation of Linear Separability in Visual Search for Color Suggests a Role of Recognizability. Journal of Experimental Psychology: Human Perception and Performance, in press.

  101. Kong, G., Alais, D., & Van der Berg, E. (2017). Orientation categories used in guidance of attention in visual search can differ in strength. Atten Percept Psychophys, 79(8), 2246-2256.

    PubMed  Article  PubMed Central  Google Scholar 

  102. Koopman, B. O. (1956a). The Theory of Search. I. Kinematic Bases. Operations Research,, 4(3), 324-346.

    Article  Google Scholar 

  103. Koopman, B. O. (1956b). The Theory of Search. II. Target Detection. Operations Research,, 4(5), 503-531.

    Article  Google Scholar 

  104. Koopman, B. O. (1957). The Theory of Search. III. The Optimum Distribution of Searching Effort. Operations Research,, 5(5), 613-626.

    Article  Google Scholar 

  105. Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148-1160. https://doi.org/10.1038/s41593-018-0210-5

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kristjansson, A. (2000). In search of rememberance: Evidence for memory in visual search. [ms 99-182]. Psychological Science, 11(4), 328-332.

    PubMed  Article  PubMed Central  Google Scholar 

  107. Kristjansson, A. (2015). Reconsidering visual search. i-Perception, 6(6). https://doi.org/10.1177/2041669515614670

  108. Kristjansson, A., & Egeth, H. E. (2020). How feature integration theory integrated cognitive psychology, neurophysiology, and psychophysics. Atten Percept Psychophys, in press.

  109. Kristjansson, A., & Johannesson, O. I. (2014). How priming in visual search affects response time distributions: Analyses with ex-Gaussian fits. Atten Percept Psychophys, 76(8), 2199-2211. https://doi.org/10.3758/s13414-014-0735-y

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kristjansson, Å., Johannesson, O. I., & Thornton, I. M. (2014). Common Attentional Constraints in Visual Foraging. PLoS ONE, 9(6), e100752. https://doi.org/10.1371/journal.pone.0100752

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjansson, A. r. (2018). Dynamics of visual attention revealed in foraging tasks. Cognition, ms.

  112. Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827-835. https://doi.org/10.1037/xhp0000517

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kunar, M. A., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2007). Does Contextual Cueing Guide the Deployment of Attention? J Exp Psychol Hum Percept Perform, 33(4), 816-828.

    PubMed  PubMed Central  Article  Google Scholar 

  114. Kunar, M. A., Humphreys, G. W., & Smith, K. J. (2003). History matters: the preview benefit in search is not onset capture. Psychol Sci, 14(2), 181-185.

    PubMed  Article  PubMed Central  Google Scholar 

  115. Kunar, M. A., Humphreys, G. W., Smith, K. J., & Hulleman, J. (2003). What is "marked" in visual marking? Evidence for effects of configuration in preview search. Percept Psychophys, 65(6), 982-996.

    PubMed  Article  PubMed Central  Google Scholar 

  116. Kunar, M. A., Shapiro, K. L., & Humphreys, G. W. (2006). Top-up search and the attentional blink: A two-stage account of the preview effect in search. Visual Cognition, 13(6), 677-699.

    Article  Google Scholar 

  117. Kundel, H., L. (2007). How to minimize perceptual error and maximize expertise in medical imaging. Paper presented at the Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment.

  118. Kundel, H. L. (2000). Disease prevalence and the index of detectability: a survey of studies of lung cancer detection by chest radiography. In E. A. Krupinski (Ed.), Medical Imaging 2000: Image Perception and Performance (Vol. 3981, pp. 135-144).

  119. Kundel, H. L., Nodine, C. F., & Carmody, D. (1978). Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol, 13(3), 175-181.

    PubMed  Article  PubMed Central  Google Scholar 

  120. Lago, M., Sechopoulos, I., Bochud, F., & Eckstein, M. (2020). Measurement of the useful field of view for single slices of different imaging modalities and targets. Journal of Medical Imaging, 7(2), 022411.

    PubMed  Article  PubMed Central  Google Scholar 

  121. Lagroix, H. E. P., Yanko, M. R., & Spalek, T. M. (2018). Transition From Feature-Search to Singleton-Detection Strategies in Visual Search: The Role of Number of Target-Defining Options. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 387-397. https://doi.org/10.1037/xhp0000467

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. J Exp Psychol Hum Percept Perform, 29(5), 1003-1020.

    PubMed  Article  PubMed Central  Google Scholar 

  123. Lamy, D., Yaron, I., & Hadas, E. (2020). Spatial cueing effects do not necessarily index spatial shifts of attention. VSS 2020 presentation.

  124. Lee, J., & Shomstein, S. (2013). Reward-Based Transfer From Bottom-Up to Top-Down Search Tasks. Psychological Science. https://doi.org/10.1177/0956797613509284

  125. Lee, J. H., Whittington, M. A., & Kopell, N. J. (2013). Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model. Plos Computational Biology, 9(8). https://doi.org/10.1371/journal.pcbi.1003164

  126. Leite, F. P., & Ratcliff, R. (2010). Modeling reaction time and accuracy of multiple-alternative decisions. Atten Percept Psychophys, 72(1), 246-273. https://doi.org/10.3758/APP.72.1.246

    Article  PubMed  PubMed Central  Google Scholar 

  127. Leonard, C. J., & Egeth, H. E. (2008). Attentional guidance in singleton search: An examination of top-down, bottom-up, and intertrial factors. Visual Cognition, 16(8), 1078-1091. https://doi.org/10.1080/13506280701580698

    Article  Google Scholar 

  128. Levi, D. M. (2008). Crowding-An essential bottleneck for object recognition: A mini-review. Vision Res, 48(5), 635-654.

    PubMed  PubMed Central  Article  Google Scholar 

  129. Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985). Vernier acuity, crowding and cortical magnification. Vision Research, 25, 963-977.

    PubMed  Article  PubMed Central  Google Scholar 

  130. Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proc Natl Acad Sci U S A, 99(14), 9596-9601.

    PubMed  PubMed Central  Article  Google Scholar 

  131. Li, Z. (2002). A salience map in primary visual cortex. Trends Cogn Sci, 6(1), 9-16.

    PubMed  Article  Google Scholar 

  132. Liesefeld, H., & Mueller, H. J. (2020). A theoretical attempt to revive the serial/parallel-search dichotomy. Atten Percept Psychophys, 82, 228–245.

    PubMed  Article  Google Scholar 

  133. Liesefeld, H. R., Liesefeld, A. M., Pollmann, S., & Müller, H. J. (2019). Biasing Allocations of Attention via Selective Weighting of Saliency Signals: Behavioral and Neuroimaging Evidence for the Dimension-Weighting Account. In T. Hodgson (Ed.), Processes of Visuospatial Attention and Working Memory (pp. 87-113). Cham: Springer International Publishing.

    Google Scholar 

  134. Liesefeld, H. R., & Müller, H. J. (2019). Distractor handling via dimension weighting. Current Opinion in Psychology, 29, 160-167. https://doi.org/10.1016/j.copsyc.2019.03.003

    Article  PubMed  Google Scholar 

  135. Lindsey, D. T., Brown, A. M., Reijnen, E., Rich, A. N., Kuzmova, Y., & Wolfe, J. M. (2010). Color Channels, not Color Appearance or Color Categories, Guide Visual Search for Desaturated Color Targets. Psychol Sci, 21(9), 1208-1214. https://doi.org/10.1177/0956797610379861

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lleras, A., Wang, Z., Ng, G. J. P., Ballew, K., Xu, J., & Buetti, S. (2020). A target contrast signal theory of parallel processing in goal-directed search. Atten Percept Psychophys, in press.

  137. Longstaffe, K. A., Hood, B. M., & Gilchrist, I. D. (2014). The influence of cognitive load on spatial search performance. Atten Percept Psychophys, 76(1), 49-63. https://doi.org/10.3758/s13414-013-0575-1

    Article  PubMed  PubMed Central  Google Scholar 

  138. MacInnes, W. J., Hunt, A. R., Hilchey, M., & Klein, R. (2014). Driving forces in free visual search: an ethology. [APP11_274]. Atten Percept Psychophys, in press.

  139. Mack, A., & Rock, I. (1998). Inattentional Blindness. Cambridge, MA: MIT Press.

    Google Scholar 

  140. Mackworth, N. H. (1965). Visual noise causes tunnel vision. Psychonomic Science, 3, 67-68.

    Article  Google Scholar 

  141. Macmillan, N. A., & Creelman, C. D. (2005). Detection Theory. Mahwah, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  142. Madison, A., Lleras, A., & Buetti, S. (2018). The role of crowding in parallel search: Peripheral pooling is not responsible for logarithmic efficiency in parallel search. Atten Percept Psychophys, 80(2), 352-373. https://doi.org/10.3758/s13414-017-1441-3

    Article  PubMed  PubMed Central  Google Scholar 

  143. Maljkovic, V., & Nakayama, K. (1994). Priming of popout: I. Role of features. Memory & Cognition, 22(6), 657-672.

    Article  Google Scholar 

  144. McLeod, P., Driver, J., & Crisp, J. (1988). Visual search for conjunctions of movement and form is parallel. Nature, 332, 154-155.

    PubMed  Article  PubMed Central  Google Scholar 

  145. Mickes, L., Wixted, J. T., & Wais, P. E. (2007). A direct test of the unequal-variance signal detection model of recognition memory. Psychon Bull Rev, 14(5), 858-865.

    PubMed  Article  PubMed Central  Google Scholar 

  146. Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Curr Opin Neurobiol, 23(2), 216-222. https://doi.org/10.1016/j.conb.2012.11.011

    Article  PubMed  Google Scholar 

  147. Moore, C. M., & Wolfe, J. M. (2001). Getting beyond the serial/parallel debate in visual search: A hybrid approach. In K. Shapiro (Ed.), The Limits of Attention: Temporal Constraints on Human Information Processing (pp. 178-198). Oxford: Oxford U. Press.

    Google Scholar 

  148. Moran, R., Zehetleitner, M., Liesefeld, H., Müller, H., & Usher, M. (2015). Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions. Psychonomic Bulletin & Review, 1-16. https://doi.org/10.3758/s13423-015-0978-1

  149. Moran, R., Zehetleitner, M. H., Mueller, H. J., & Usher, M. (2013). Competitive Guided Search: Meeting the challenge of benchmark RT distributions. J of Vision, 13(8). https://doi.org/10.1167/13.8.24.

  150. Motter, B. C., & Simoni, D. A. (2008). Changes in the functional visual field during search with and without eye movements. Vision Research, 48(22), 2382-2393.

    PubMed  Article  Google Scholar 

  151. Nagy, A. L., & Sanchez, R. R. (1990). Critical color differences determined with a visual search task. J. Optical Society of America - A, 7(7), 1209-1217.

    Article  Google Scholar 

  152. Nagy, A. L., Sanchez, R. R., & Hughes, T. C. (1990). Visual search for color differences with foveal and peripheral vision. J. Optical Society of America - A, 7(10), 1995-2001.

    Article  Google Scholar 

  153. Nagy, & Cone. (1993). Asymmetries in visual search as a function of color differences. Investigative Ophthalmology and Visual Science, 34(4), 1235.

    Google Scholar 

  154. Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320, 264-265.

    PubMed  Article  PubMed Central  Google Scholar 

  155. Navon, D. (1977). Forest before the trees: The precedence of global features in visual perception. Cognitive Psych., 9, 353-383.

    Article  Google Scholar 

  156. Neider, M. B., & Zelinsky, G. J. (2008). Exploring set size effects in scenes: Identifying the objects of search. Visual Cognition, 16(1), 1 - 10.

    Article  Google Scholar 

  157. Neider, M. B., & Zelinsky, G. J. (2011). Cutting through the clutter: Searching for targets in evolving complex scenes. Journal of Vision, 11(14). https://doi.org/10.1167/11.14.7

  158. Neisser, U. (1967). Cognitive Psychology. New York: Appleton, Century, Crofts.

    Google Scholar 

  159. Nodine, C. F., Mello-Thoms, C., Kundel, H. L., & Weinstein, S. P. (2002). Time course of perception and decision making during mammographic interpretation. AJR Am J Roentgenol, 179(4), 917-923.

    PubMed  Article  Google Scholar 

  160. Nothdurft, H. C. (2000). Salience from feature contrast: variations with texture density. Vision Res, 40(23), 3181-3200.

    PubMed  Article  Google Scholar 

  161. Ogawa, H., Takeda, Y., & Yagi, A. (2002). Inhibitory tagging on randomly moving objects. Psychol Sci, 13(2), 125-129.

    PubMed  Article  Google Scholar 

  162. Olds, E. S., & Fockler, K. A. (2004). Does previewing one stimulus feature help conjunction search? Perception, 33(2), 195-216.

    PubMed  Article  Google Scholar 

  163. Oliva, A. (2005). Gist of the scene. In L. Itti, G. Rees & J. Tsotsos (Eds.), Neurobiology of attention (pp. 251-257). San Diego, CA: Academic Press / Elsevier.

    Google Scholar 

  164. Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: when it guides attention and when it does not. Trends Cogn Sci, 15(7), 327-334. https://doi.org/10.1016/j.tics.2011.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  165. Olzak, L. A., & Thomas, J. P. (1986). Seeing spatial patterns. In K. R. Boff, L. Kaufmann & J. P. Thomas (Eds.), Handbook of Perception and Human Performance (pp. Chap. 7). NY, NY: Wiley and Sons.

    Google Scholar 

  166. Palmer, E. M., Horowitz, T. S., Torralba, A., & Wolfe, J. M. (2009). What are the Shapes of Response Time Distributions in Visual Search?. J Exp Psychol Hum Percept Perform, submitted Aug 09.

  167. Palmer, E. M., Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2019). Measuring the Time Course of Selection During Visual Search. Atten Percept Psychophys, 81(1), 47-60. https://doi.org/10.3758/s13414-018-1596-6

    Article  PubMed  PubMed Central  Google Scholar 

  168. Palmer, J., & McLean, J. (1995). Imperfect, unlimited-capacity, parallel search yields large set-size effects. Paper presented at the Society for Mathematical Psychology, Irvine, CA.

  169. Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Res, 40(10-12), 1227-1268.

    PubMed  Article  PubMed Central  Google Scholar 

  170. Pedziwiatr, M. A., Wallis, T. S. A., Kümmerer, M., & Teufel, C. (2019). Meaning maps and deep neural networks are insensitive to meaning when predicting human fixations. Journal of Vision, 19(10), 253c-253c. https://doi.org/10.1167/19.10.253c

    Article  Google Scholar 

  171. Pereira, E. J., & Castelhano, M. S. (2019). Attentional capture is contingent on scene region: Using surface guidance framework to explore attentional mechanisms during search. [journal article]. Psychonomic Bulletin & Review, 26(4), 1273-1281. https://doi.org/10.3758/s13423-019-01610-z

    Article  Google Scholar 

  172. Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287-292.

    PubMed  Article  PubMed Central  Google Scholar 

  173. Posner, M. I. (1980). Orienting of attention. Quart. J. Exp. Psychol., 32, 3-25.

    Article  Google Scholar 

  174. Posner, M. I., & Cohen, Y. (1984). Components of attention. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and Performance X (pp. 55-66). Hillside, NJ: Erlbaum.

    Google Scholar 

  175. Quinlan, P. T., & Humphreys, G. W. (1987). Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches. Perception and Psychophysics, 41, 455- 472.

    PubMed  Article  PubMed Central  Google Scholar 

  176. Rajsic, J., Ouslis, N. E., Wilson, D. E., & Pratt, J. (2017). Looking sharp: Becoming a search template boosts precision and stability in visual working memory. [journal article]. Attention, Perception, & Psychophysics, 79(6), 1643-1651. https://doi.org/10.3758/s13414-017-1342-5

    Article  Google Scholar 

  177. Ramamoorthy, C. V., & Li, H. F. (1977). Pipelined Architecture. Computing Surveys, 0(1), 61-102.

  178. Ratcliff, R. (1978). A theory of memory retrieval. Psych. Review, 85(2), 59-108.

    Article  Google Scholar 

  179. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: Current Issues and History. Trends in Cognitive Sciences, 20(4), 260-281. https://doi.org/10.1016/j.tics.2016.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  180. Rensink, R. A. (2000). Seeing, sensing, and scrutinizing. Vision Res, 40(10-12), 1469-1487.

    PubMed  Article  PubMed Central  Google Scholar 

  181. Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. J Vis, 7(2), 1-22.

    PubMed  Article  PubMed Central  Google Scholar 

  182. Rosenholtz, R. E. (2011). What your visual system sees where you are not looking. In B. E. R. T. N. Pappas (Ed.), Proc. SPIE: Human Vision and Electronic Imaging, XVI,. San Francisco, CA: SPIE.

    Google Scholar 

  183. Rosenholtz, R. E. (2020). What modern vision science reveals about the awareness puzzle: Summary-statistic encoding plus limits on decision complexity underlie the richness of visual perception and its quirky failures. Atten Percept Psychophys.

  184. Rosenholtz, R. E., Huang, J., & Ehinger, K. A. (2012). Rethinking the role of top-down attention in vision: effects attributable to a lossy representation in peripheral vision. [Hypothesis & Theory]. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00013

  185. Roskies, A. (1999). The binding problem. Neuron, 24(1), 7-9.

    PubMed  Article  PubMed Central  Google Scholar 

  186. Rothkegel, L. O. M., Schutt, H. H., Trukenbrod, H. A., Wichmann, F. A., & Engbert, R. (2019). Searchers adjust their eye-movement dynamics to target characteristics in natural scenes. Sci Rep, 9(1), 1635. https://doi.org/10.1038/s41598-018-37548-w

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sanders, A. F. (1963). The selective process in the Functional Visual Field. Assen, NL.: Van Gorcum.

    Google Scholar 

  188. Sanders, A. F. (1970). Some aspects of the selective process in the functional visual field. Ergonomics, 13(1), 101-117.

    PubMed  Article  PubMed Central  Google Scholar 

  189. Schall, J. D. (2019). Accumulators, Neurons, and Response Time. Trends in Neurosciences, 42(12), 848-860. https://doi.org/10.1016/j.tins.2019.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  190. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev., 84, 1-66.

    Article  Google Scholar 

  191. Schwarz, W., & Miller, J. O. (2016). GSDT: An Integrative Model of Visual Search J. Exp. Psychol: Human Perception and Performance, 42(10), 1654-1675. Advance online publication. https://doi.org/10.1037/xhp0000247

  192. Scialfa, C. T., Kline, D. W., & Lyman, B. J. (1987). Age differences in target identification as a function of retinal location and noise level: Examination of the useful field of view. Psychology and Aging, 2(1), 14-19.

    PubMed  Article  PubMed Central  Google Scholar 

  193. Sekuler, R., & Ball, K. (1986). Visual localization: Age and practice. J. Optical Society of America - A, 3(6), 864-868.

    Article  Google Scholar 

  194. Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends Cogn Sci, 10(1), 38-45.

    PubMed  Article  PubMed Central  Google Scholar 

  195. Shi, Z., Allenmark, F., Zhu, X., Elliott, M. A., & Müller, H. J. (2019). To quit or not to quit in dynamic search. Atten Percept Psychophys, in press.

  196. Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spat Vis, 14(1), 59-75.

    PubMed  PubMed Central  Google Scholar 

  197. Simons, D. J., & Rensink, R. A. (2005). Change blindness: past, present, and future. Trends Cogn Sci, 9(1), 16-20.

    PubMed  Article  PubMed Central  Google Scholar 

  198. Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Attention, Perception, & Psychophysics, 81(8), 2571-2589. https://doi.org/10.3758/s13414-019-01832-2

    Article  Google Scholar 

  199. Smith, A. D., Hood, B. M., & Gilchrist, I. D. (2010). Probabilistic Cuing in Large-Scale Environmental Search. [Article]. Journal of Experimental Psychology-Learning Memory and Cognition, 36(3), 605-618. https://doi.org/10.1037/a0018280

    Article  Google Scholar 

  200. Smith, T. J., & Henderson, J. M. (2009). Facilitation of return during scene viewing. Visual Cognition, 17(6), 1083 - 1108.

    Article  Google Scholar 

  201. Sterchi, Y., Hättenschwiler, N., & Schwaninger, A. (2019). Detection Measures for Visual Inspection of X-ray Images of Passenger Baggage. Atten Percept Psychophys, 81.

  202. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30(Attention and performance II), 276-315.

  203. Stilwell, B. T., & Vecera, S. P. (2019). Learned and cued distractor rejection for multiple features in visual search. Attention, Perception, & Psychophysics, 81(2), 359-376. https://doi.org/10.3758/s13414-018-1622-8

    Article  Google Scholar 

  204. Stilwell, B. T., & Vecera, S. P. (2020). Learned distractor rejection in the face of strong target guidance. Journal of Experimental Psychology: Human Perception and Performance. https://doi.org/10.1037/xhp0000757

  205. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51(6), 599-606.

    PubMed  Article  PubMed Central  Google Scholar 

  206. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799-806.

    PubMed  PubMed Central  Google Scholar 

  207. Theeuwes, J. (2013). Feature-based attention: it is all bottom-up priming. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628). https://doi.org/10.1098/rstb.2013.0055

  208. Theeuwes, J. (2018). Visual Selection: Usually fast and automatic; seldom slow and volitional. J. of Cognition, 1(1), 21. https://doi.org/10.5334/joc.32

    Article  Google Scholar 

  209. Theeuwes, J., Olivers, C. N. L., & Belopolsky, A. (2010). Stimulus-driven capture and contingent capture. Wiley Interdisciplinary Reviews-Cognitive Science, 1(6), 872-881. https://doi.org/10.1002/wcs.83

    Article  PubMed  PubMed Central  Google Scholar 

  210. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6 June), 520-552.

    PubMed  Article  PubMed Central  Google Scholar 

  211. Townsend, J. T. (1971). A note on the identification of parallel and serial processes. Perception and Psychophysics, 10, 161-163.

    Article  Google Scholar 

  212. Townsend, J. T. (2016). A Note on Drawing Conclusions in the Study of Visual Search and the Use of Slopes in Particular. A reply to Kristjansson and Wolfe. i-Perception, ms.

  213. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6, 171-178.

    PubMed  Article  PubMed Central  Google Scholar 

  214. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136.

    PubMed  Article  PubMed Central  Google Scholar 

  215. Treisman, A., & Sato, S. (1990). Conjunction search revisited. J. Exp. Psychol: Human Perception and Performance, 16(3), 459-478.

    Google Scholar 

  216. Tuddenham, W. J. (1962). Visual search, image organization, and reader error in roentgen diagnosis. Studies of the psycho-physiology of roentgen image perception. Radiology, 78, 694-704.

    PubMed  PubMed Central  Google Scholar 

  217. Van der Stigchel, S., Belopolsky, A. V., Peters, J. C., Wijnen, J. G., Meeter, M., & Theeuwes, J. (2009). The limits of top-down control of visual attention. [Review]. Acta Psychologica, 132(3), 201-212. https://doi.org/10.1016/j.actpsy.2009.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  218. van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464. https://doi.org/10.1037/a0036229

    Article  PubMed  PubMed Central  Google Scholar 

  219. Vanderkerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psych Bulletin & Review, 14(6), 1101-1126.

    Article  Google Scholar 

  220. VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects. Perception, 30(6), 655-668.

    PubMed  Article  PubMed Central  Google Scholar 

  221. Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. J Vis, 5(1), 81-92. https://doi.org/10.1167/5.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  222. Vo, M. L., & Wolfe, J. M. (2013). Differential ERP Signatures Elicited by Semantic and Syntactic Processing in Scenes. Psychological Science, 24(9), 1816-1823 https://doi.org/10.1177/0956797613476955

    Article  PubMed  PubMed Central  Google Scholar 

  223. Võ, M. L.-H., Boettcher, S. E. P., & Draschkow, D. (2019). Reading scenes: how scene grammar guides attention and aids perception in real-world environments. Current Opinion in Psychology, 29, 205-210. https://doi.org/10.1016/j.copsyc.2019.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  224. von Muhlenen, A., Muller, H. J., & Muller, D. (2003). Sit-and-wait strategies in dynamic visual search. Psychol Sci, 14(4), 309-314.

    Article  Google Scholar 

  225. Watson, A. B. (2018). The Field of View, the Field of Resolution, and the Field of Contrast Sensitivity. Journal of Perceptual Imaging, 1(1), 10505-10501-10505-10511. https://doi.org/10.2352/J.Percept.Imaging.2018.1.1.010505

  226. Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90-122.

    PubMed  Article  PubMed Central  Google Scholar 

  227. Whitney, D., & Levi, D. M. (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160-168. https://doi.org/10.1016/j.tics.2011.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  228. Whitney, D., & Yamanashi Leib, A. (2018). Ensemble Perception. Annu Rev Psychol, 69, 105-129. https://doi.org/10.1146/annurev-psych-010416-044232

    Article  PubMed  PubMed Central  Google Scholar 

  229. Wilming, N., Harst, S., Schmidt, N., & Konig, P. (2013). Saccadic momentum and facilitation of return saccades contribute to an optimal foraging strategy. PLoS Comput Biol, 9(1), e1002871. https://doi.org/10.1371/journal.pcbi.1002871 PCOMPBIOL-D-12-01206 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  230. Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychol Rev, 114(1), 152-176.

    PubMed  Article  PubMed Central  Google Scholar 

  231. Wolfe, B., Dobres, J., Rosenholtz, R. E., & Reimer, B. (2017). More than the Useful Field: Considering peripheral vision in driving. Applied Ergonomics, 65, 316-325.

    PubMed  Article  PubMed Central  Google Scholar 

  232. Wolfe, J. M. (1994a). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1(2), 202-238.

    PubMed  Article  PubMed Central  Google Scholar 

  233. Wolfe, J. M. (1994b). Visual search in continuous, naturalistic stimuli. Vision Research, 34(9), 1187-1195.

    PubMed  Article  PubMed Central  Google Scholar 

  234. Wolfe, J. M. (1998). What do 1,000,000 trials tell us about visual search? Psychological Science, 9(1), 33-39.

    Article  Google Scholar 

  235. Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends Cogn Sci, 7(2), 70-76.

    PubMed  Article  PubMed Central  Google Scholar 

  236. Wolfe, J. M. (2007). Guided Search 4.0: Current Progress with a model of visual search. In W. Gray (Ed.), Integrated Models of Cognitive Systems (pp. 99-119). New York: Oxford.

    Google Scholar 

  237. Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychol Sci, 23(7), 698-703. https://doi.org/10.1177/0956797612443968

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), article 10. https://doi.org/10.1167/13.3.10

    Article  Google Scholar 

  239. Wolfe, J. M. (2014). Approaches to Visual Search: Feature Integration Theory and Guided Search. In A. C. Nobre & S. Kastner (Eds.), Oxford Handbook of Attention (pp. 11-55). New York: Oxford U Press.

    Google Scholar 

  240. Wolfe, J. M. (2017). “I am not dead yet!” – The Item responds to Hulleman and Olivers. Behav Brain Sci, 48. https://doi.org/10.1017/S0140525X16000303, e161

  241. Wolfe, J. M. (2018). Visual Search. In J. Wixted) (Ed.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (Vol. II. Sensation, Perception & Attention: John Serences (UCSD), pp. 569-623): Wiley.

  242. Wolfe, J. M., Aizenman, A. M., Boettcher, S. E. P., & Cain, M. S. (2016). Hybrid Foraging Search: Searching for multiple instances of multiple types of target. Vision Res, 119, 50-59.

    PubMed  PubMed Central  Article  Google Scholar 

  243. Wolfe, J. M., Alvarez, G. A., & Horowitz, T. S. (2000). Attention is fast but volition is slow. Nature, 406, 691.

    PubMed  Article  PubMed Central  Google Scholar 

  244. Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I., & Sherman, A. M. (2011). Visual search for arbitrary objects in real scenes. Atten Percept Psychophys, 73(6), 1650-1671. https://doi.org/10.3758/s13414-011-0153-3

    Article  PubMed  PubMed Central  Google Scholar 

  245. Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol: Human Perception and Performance, 29(2), 483-502.

    Google Scholar 

  246. Wolfe, J. M., Cain, M. S., Ehinger, K. A., & Drew, T. (2015). Guided Search 5.0: Meeting the challenge of hybrid search and multiple-target foraging. paper presented at the 2015 Vision Sciences Society meeting.

  247. Wolfe, J. M., & Cave, K. R. (1999). The psychophysical evidence for a binding problem in human vision. Neuron, 24(1), 11-17.

    PubMed  Article  PubMed Central  Google Scholar 

  248. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the Feature Integration model for visual search. J. Exp. Psychol. - Human Perception and Perf., 15, 419-433.

    Article  Google Scholar 

  249. Wolfe, J. M., & DiMase, J. S. (2003). Do intersections serve as basic features in visual search? Perception, 32(6), 645-656.

    PubMed  Article  PubMed Central  Google Scholar 

  250. Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O'Connell, K. M. (1992). The role of categorization in visual search for orientation. J. Exp. Psychol: Human Perception and Performance, 18(1), 34-49. https://doi.org/10.1037//0096-1523.18.1.34

    Article  Google Scholar 

  251. Wolfe, J. M., & Gancarz, G. (1996). Guided Search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In V. Lakshminarayanan (Ed.), Basic and Clinical Applications of Vision Science (pp. 189-192). Dordrecht, Netherlands: Kluwer Academic.

    Google Scholar 

  252. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501.

    PubMed  Article  Google Scholar 

  253. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. [Review Article]. Nature Human Behaviour, 1, 0058. https://doi.org/10.1038/s41562-017-0058

  254. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare targets are often missed in visual search. Nature, 435(7041), 439-440. https://doi.org/10.1038/435439a

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wolfe, J. M., Klempen, N., & Dahlen, K. (2000). Post-attentive vision. Journal of Experimental Psychology:Human Perception & Performance, 26(2), 693-716.

    Google Scholar 

  256. Wolfe, J. M., & Myers, L. (2010). Fur in the midst of the waters: Visual search for material type is inefficient. J of Vision, 10(9 article 8).

  257. Wolfe, J. M., O'Neill, P. E., & Bennett, S. C. (1998). Why are there eccentricity effects in visual search? Perception and Psychophysics, 60(1), 140-156.

    PubMed  Article  PubMed Central  Google Scholar 

  258. Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Res, 50(14), 1304-1311. https://doi.org/10.1016/j.visres.2009.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wolfe, J. M., & Van Wert, M. J. (2010). Varying Target Prevalence Reveals Two Dissociable Decision Criteria in Visual Search. Curr Biol, 20(2), 121-124. https://doi.org/10.1016/j.cub.2009.11.066

    Article  PubMed  PubMed Central  Google Scholar 

  260. Wolfe, J. M., Vo, M. L., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends Cogn Sci, 15(2), 77-84. https://doi.org/10.1016/j.tics.2010.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  261. Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219-224.

    PubMed  Article  PubMed Central  Google Scholar 

  262. Wright, O. (2012). Categorical influences on chromatic search asymmetries. Visual Cognition, 20(8), 947-987. https://doi.org/10.1080/13506285.2012.715600

    Article  Google Scholar 

  263. Wu, C.-C., & Wolfe, J. M. (2019). Useful Field of View shows why we miss the search target when we “look at” it. paper presented at the Annual Meeting of the Vision Science Society, May 17-22, 2019.

  264. Yamauchi, K., & Kawahara, J. I. (2020). Inhibitory template for visual marking with endogenous spatial cueing. Visual Cognition, 1-24. https://doi.org/10.1080/13506285.2020.1842834

  265. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. - Human Perception and Performance, 16(1), 121-134.

    Article  Google Scholar 

  266. Young, A. H., & Hulleman, J. (2013). Eye Movements Reveal how Task Difficulty Moulds Visual Search. Journal of Experimental Psychology-Human Perception and Performance, 39(1), 168-190. https://doi.org/10.1037/a0028679

    Article  PubMed  PubMed Central  Google Scholar 

  267. Yu, C. P., Samaras, D., & Zelinsky, G. J. (2014). Modeling visual clutter perception using proto-object segmentation. J Vis, 14(7). https://doi.org/10.1167/14.7.4

  268. Yu, X., & Geng, J. J. (2019). The attentional template is shifted and asymmetrically sharpened by distractor context. J Exp Psychol Hum Percept Perform, 45(3), 336-353. https://doi.org/10.1037/xhp0000609

    Article  PubMed  PubMed Central  Google Scholar 

  269. Zacks, J. M., & Swallow, K. M. (2007). Event Segmentation. Curr Dir Psychol Sci, 16(2), 80-84. https://doi.org/10.1111/j.1467-8721.2007.00480.x

    Article  PubMed  PubMed Central  Google Scholar 

  270. Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274(5670), 423-428.

    PubMed  Article  Google Scholar 

  271. Zelinsky, G. J., Chen, Y., Ahn, S., & Adeli, H. (2020). Changing perspectives on goal-directed attention control: The past, present, and future of modeling fixations during visual search. Psychology of Learning and Motivation, 73, 231-286. https://doi.org/10.1016/bs.plm.2020.08.001

    Article  Google Scholar 

  272. Zelinsky, G. J., & Sheinberg, D. L. (1997). Eye movements during parallel / serial visual search. J. Experimental Psychology: Human Perception and Performance, 23(1), 244-262.

    Google Scholar 

  273. Zhang, X., Huang, J., Yigit-Elliott, S., & Rosenholtz, R. (2015). Cube search, revisited. Journal of Vision, 15(3), 9-9. https://doi.org/10.1167/15.3.9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Sneha Suresh, Wanyi Lyu, Chia-Chien Wu, Farahnaz Wick, Beatriz Gil Gómez de Liaño, Johan Hulleman, and Alejandro Lleras for useful comments on drafts of this paper. This research was supported by NIH-EY017001 and NIH-CA207490.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Wolfe.

Additional information

Open Practices Statement

This paper does not report new data, but I will be happy to try to share any of the previously published data, on request. The code for the simulation will be available on our website, https://search.bwh.harvard.edu/ and at https://osf.io/9n4hf/files/ . For any other requests, please email the author at: jwolfe@bwh.harvard.edu.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolfe, J.M. Guided Search 6.0: An updated model of visual search. Psychon Bull Rev (2021). https://doi.org/10.3758/s13423-020-01859-9

Download citation

Keywords

  • Attention
  • Visual working memory
  • Visual search
  • Selective attention
  • Guided search
  • Reaction time
  • Errors
  • Top-down
  • Bottom-up