What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior

Abstract

There is an emerging consensus that spatial thinking plays a fundamental role in how people conceive, express, and perform mathematics. However, the underlying nature of this relationship remains elusive. Questions remain as to how, why, and under what conditions spatial skills and mathematics are linked. This review paper addresses this gap. Through a review and synthesis of research in psychology, neuroscience, and education, we examine plausible mechanistic accounts for the oft-reported close, and potentially causal, relations between spatial and mathematical thought. More specifically, this review targets candidate mechanisms that link spatial visualization skills and basic numerical competencies. The four explanatory accounts we describe and critique include the: (1) Spatial representation of numbers account, (2) shared neural processing account, (3) spatial modelling account, and (4) working memory account. We propose that these mechanisms do not operate in isolation from one another, but in concert with one another to give rise to spatial-numerical associations. Moving from the theoretical to the practical, we end our review by considering the extent to which spatial visualization abilities are malleable and transferrable to numerical reasoning. Ultimately, this paper aims to provide a more coherent and mechanistic account of spatial-numerical relations in the hope that this information may (1) afford new insights into the uniquely human ability to learn, perform, and invent abstract mathematics, and (2) on a more practical level, prove useful in the assessment and design of effective mathematics curricula and intervention moving forward.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    It should be recognized that this argument also applies to relations between spatial visualization and numerical reasoning. Although sex differences are frequently observed on measures of spatial visualization (namely mental rotation), sex differences do not regularly occur on measures of numerical reasoning (e.g., see Hutchison, Lyons, & Ansari, 2019; Kersey, Braham, Csumitta, Libertus, & Cantlon, 2018). This finding provides an additional constraint to consider in the attempt to disentangle the link between spatial visualization and numerical reasoning.

References

  1. Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133–137.

    Article  Google Scholar 

  2. Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology: General, 117, 288–318.

    Article  Google Scholar 

  3. Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245-266.

    PubMed  Article  Google Scholar 

  4. Anderson, M. L. (2016) Précis of. Behavioral and Brain Sciences 39.

  5. Antonietti, A. (1999). Can students predict when imagery will allow them to discover the problem solution?. European Journal of Cognitive Psychology, 11(3), 407-428.

    Article  Google Scholar 

  6. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.

    PubMed  Article  Google Scholar 

  7. Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125-135.

    PubMed  Article  Google Scholar 

  8. Bisiach, E., & Luzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129- 133.

    PubMed  Article  Google Scholar 

  9. Boonen, A. J., van der Schoot, M., van Wesel, F., de Vries, M. H., & Jolles, J. (2013). What underlies successful word problem solving? A path analysis in sixth grade students. Contemporary Educational Psychology, 38(3), 271-279.

    Article  Google Scholar 

  10. Boonen, A. J., van Wesel, F., Jolles, J., & van der Schoot, M. (2014). The role of visual representation type, spatial ability, and reading comprehension in word problem solving: An item-level analysis in elementary school children. International Journal of Educational Research, 68, 15-26.

    Article  Google Scholar 

  11. Calabria, M., & Rossetti, Y. (2005). Interference between number processing and line bisection: a methodology. Neuropsychologia, 43(5), 779-783.

    PubMed  Article  Google Scholar 

  12. Carpenter, P. A., & Just, M. A. (1986). Spatial ability: An information processing approach to psychometrics. In R. J. Stenberg (Ed.), Advances in the psychology of human intelligence (Vol. 3, pp. 221-252). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  13. Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.

    Article  Google Scholar 

  14. Cheung, C. N., Sung, J. Y., & Lourenco, S. F. (2019). Does training mental rotation transfer to gains in mathematical competence? Assessment of an at-home visuospatial intervention. Psychological Research, 1-18.

  15. Chu, M., & Kita, S. (2011). The nature of gestures' beneficial role in spatial problem solving. Journal of Experimental Psychology: General, 140(1), 102.

    Article  Google Scholar 

  16. Cipora, K., Hohol, M., Nuerk, H. C., Willmes, K., Brożek, B., Kucharzyk, B., & Nęcka, E. (2016). Professional mathematicians differ from controls in their spatial-numerical associations. Psychological Research, 80(4), 710-726.

    PubMed  Article  Google Scholar 

  17. Cipora, K., Patro, K., & Nuerk, H. C. (2015). Are spatial-numerical associations a cornerstone for arithmetic learning? The lack of genuine correlations suggests no. Mind, Brain, and Education, 9(4), 190-206.

    Article  Google Scholar 

  18. Cornu, V., Schiltz, C., Pazouki, T., & Martin, R. (2017). Training early visuo-spatial abilities: A controlled classroom-based intervention study. Applied Developmental Science, 1-21.

  19. Davis, B, the Spatial Reasoning Study Group (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. New York, NY: Routledge.

    Google Scholar 

  20. Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.

    Google Scholar 

  21. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396.

    Article  Google Scholar 

  22. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398.

    PubMed  Article  Google Scholar 

  23. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487-506.

  24. Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25–32.

    Article  Google Scholar 

  25. DeStefano, D., & LeFevre, J. A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353–386.

    Article  Google Scholar 

  26. Fischer, M. H., & Fias, M. H. (2005). Spatial representation of numbers. Handbook of Mathematical Cognition, 43-54.

  27. Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial–numerical associations. Brain and cognition, 72(3), 333-336.

    PubMed  Article  Google Scholar 

  28. Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177-183.

    Article  Google Scholar 

  29. Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97-124.

    Article  Google Scholar 

  30. Galton, F. (1880). Visualised numerals. Nature, 21(533), 252-256.

    Article  Google Scholar 

  31. Galton, F. (1881). Visualised numerals. The Journal of the Anthropological Institute of Great Britain and Ireland, 10, 85-102.

  32. Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: local diagnostic value. Archives of Neurology & Psychiatry, 44(2), 398-408.

    Article  Google Scholar 

  33. Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87-B95.

    PubMed  Article  Google Scholar 

  34. Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organised: Evidence from days of the week. Cortex, 40, 171-172.

    PubMed  Article  Google Scholar 

  35. Giaquinto, M. (2008). Visualizing in mathematics. The Philosophy of Mathematical Practice. New York, NY: Oxford University Press.

    Google Scholar 

  36. Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 22(3), 170-218.

    Article  Google Scholar 

  37. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental Psychology, 48(5), 1229-1241.

    PubMed  Article  Google Scholar 

  38. Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press

    Google Scholar 

  39. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1-51.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60-68.

  41. Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236-264.

  42. Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019a). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 68-90.

  43. Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019b). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience & Biobehavioral Reviews, 103, 316-336.

  44. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689

    Article  Google Scholar 

  45. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge Handbook of Visuospatial Thinking, 121-169.

  46. Holmes, G. (1918). Disturbances of visual orientation. The British Journal of Ophthalmology, 2(9), 449-468.

    PubMed  PubMed Central  Article  Google Scholar 

  47. Hubbard, E. M., M. Piazza, P. Pinel, & Dehaene (2009). Numerical and spatial intuitions: a role for posterior parietal cortex? In L. Tommasi, L. Nadel, and M. A. Peterson (Eds.), Cognitive biology: Evolutionary and developmental perspectives on mind, brain and behavior (pp. 221–246). Cambridge, MA: MIT Press

    Google Scholar 

  48. Hutchison, J. E., Lyons, I. M., & Ansari, D. (2019). More similar than different: Gender differences in children's basic numerical skills are the exception not the rule. Child Development, 90(1), e66-e79.

    PubMed  Article  Google Scholar 

  49. Huttenlocher, J., Jordan, N. C., & Levine, S. C. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123(3), 284-296.

    Article  Google Scholar 

  50. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71-78.

    PubMed  Article  Google Scholar 

  51. Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., & Jäncke, L. (2001). Cortical activations during the mental rotation of different visual objects. NeuroImage, 13(1), 143-152.

    PubMed  Article  Google Scholar 

  52. Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137.

    PubMed  Article  Google Scholar 

  53. Kadosh, R. C., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132-147.

    Article  Google Scholar 

  54. Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223.

    Article  Google Scholar 

  55. Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831-1836.

    PubMed  Article  Google Scholar 

  56. Kersey, A. J., Braham, E. J., Csumitta, K. D., Libertus, M. E., & Cantlon, J. F. (2018). No intrinsic gender differences in children’s earliest numerical abilities. NPJ Science of Learning, 3(1), 12.

    PubMed  PubMed Central  Article  Google Scholar 

  57. King, M. J., Katz, D. P., Thompson, L. A., & Macnamara, B. N. (2019). Genetic and environmental influences on spatial reasoning: A meta-analysis of twin studies. Intelligence, 73, 65-77.

    Article  Google Scholar 

  58. Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803-821.

    Article  Google Scholar 

  59. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity. Intelligence, 14(4), 389–433.

    Article  Google Scholar 

  60. Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamaki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20, 65–76.

    Google Scholar 

  61. Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77–94.

  62. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.

    Google Scholar 

  63. LeFevre, J. A., Jimenez Lira, C., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S. L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 641.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Li, Y., & Geary, D. C. (2017). Children’s visuospatial memory predicts mathematics achievement through early adolescence. PLoS One, 12(2), e0172046.

    PubMed  PubMed Central  Article  Google Scholar 

  65. Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H. C. (2013). Walk the number line–An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74-84.

    Article  Google Scholar 

  66. Loetscher, T., Bockisch, C., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20, R264–R265

    PubMed  Article  Google Scholar 

  67. Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 181-248). Hillsdale, NJL Erlbaum.

    Google Scholar 

  68. Lohman, D. F. (1996). Spatial ability and G. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and assessment (pp. 97–116). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  69. Lourenco, S. F., Cheung, C. N., & Aulet, L. S. (2018). Is visuospatial reasoning related to early mathematical development? A critical review. In Heterogeneity of Function in Numerical Cognition (pp. 177-210). London, UK: Academic Press.

  70. Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170-186.

    PubMed  Article  Google Scholar 

  71. Marghetis, T., Núñez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: Hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology, 67(8), 1579-1596.

    PubMed  Article  Google Scholar 

  72. Mathieu, R., Epinat-Duclos, J., Sigovan, M., Breton, A., Cheylus, A., Fayol, M., … Prado, J. (2017). What's Behind a “+” Sign? Perceiving an Arithmetic Operator Recruits Brain Circuits for Spatial Orienting. Cerebral Cortex, 28(5), 1673-1684.

    Article  Google Scholar 

  73. Mayer, E., Martory, M. D., Pegna, A. J., Landis, T., Delavelle, J., & Annoni, J. M. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain, 122(6), 1107-1120.

    PubMed  Article  Google Scholar 

  74. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324-1333.

    Article  Google Scholar 

  75. Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. Advances in Child Development and Behavior, 42, 197-243.

    PubMed  Article  Google Scholar 

  76. Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206-1227.

    Article  Google Scholar 

  77. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621-640.

    Article  Google Scholar 

  78. Moss, J., Bruce, C. D., Caswell, B., Flynn, T., & Hawes, Z. (2016). Taking shape: Activities to develop geometric and spatial thinking. Grades K-2. Pearson Canada Incorporated.

  79. Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29-35.

    Google Scholar 

  80. Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491-505.

    PubMed  Google Scholar 

  81. Paivio, A. (1983). The mind's eye in arts and science. Poetics, 12(1), 1-18.

    Article  Google Scholar 

  82. Paivio, A. (2013). Imagery and verbal processes. New York, NY: Psychology Press.

    Google Scholar 

  83. Patro, K., Fischer, U., Nuerk, H. C., & Cress, U. (2016). How to rapidly construct a spatial–numerical representation in preliterate children (at least temporarily). Developmental Science, 19(1), 126-144.

    PubMed  Article  Google Scholar 

  84. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375-394.

    PubMed  Article  Google Scholar 

  85. Redick, T. S., Shipstead, Z., Wiemers, E. A., Melby-Lervåg, M., & Hulme, C. (2015). What’s working in working memory training? An educational perspective. Educational Psychology Review, 27(4), 617-633.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Root-Bernstein, R. S. (1985). Visual thinking: The art of imagining reality. Transactions of the American Philosophical Society, 75(6), 50-67.

    Article  Google Scholar 

  87. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.

    Article  Google Scholar 

  88. Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., & Luwel, K. (2018). Associations of number line estimation with mathematical competence: A meta-analysis. Child Development, 89(5), 1467-1485.

    PubMed  Article  Google Scholar 

  89. Seydell-Greenwald, A., Ferrara, K., Chambers, C. E., Newport, E. L., & Landau, B. (2017). Bilateral parietal activations for complex visual-spatial functions: Evidence from a visual-spatial construction task. Neuropsychologia, 106, 194-206.

    PubMed  PubMed Central  Article  Google Scholar 

  90. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328-331.

    Article  Google Scholar 

  91. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545-560.

    Article  Google Scholar 

  92. Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: the role of visuomotor integration and visuospatial skills. Journal of Experimental Child Psychology, 145, 22-33.

    PubMed  Article  Google Scholar 

  93. Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2017). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. Neuroimage, 146, 376-394.

  94. Stengel, E. (1944). Loss of spatial orientation, constructional apraxia and Gerstmann's syndrome. Journal of Mental Science, 90(380), 753-760.

    Article  Google Scholar 

  95. Tam, Y. P., Wong, T. T. Y., & Chan, W. W. L. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24.

    Article  Google Scholar 

  96. Titze, C., Jansen, P., & Heil, M. (2010). Mental rotation performance and the effect of gender in fourth graders and adults. European Journal of Developmental Psychology, 7(4), 432-444.

    Article  Google Scholar 

  97. Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009). A structural model of algebra achievement: computational fluency and spatial visualisation as mediators of the effect of working memory on algebra achievement. Educational Psychology, 29(2), 239–266.

    Article  Google Scholar 

  98. Toomarian, E. Y., & Hubbard, E. M. (2018). On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neuroscience & Biobehavioral Reviews.

  99. Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S., … Kovas, Y. (2014). Why do spatial abilities predict mathematical performance?. Developmental Science, 17(3), 462-470.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why and how. Psychology of Learning and Motivation, 57, 147–181.

    Article  Google Scholar 

  101. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352.

    PubMed  Article  Google Scholar 

  102. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114-119.

    PubMed  Article  Google Scholar 

  103. Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the SNARC effect: An individual differences approach. PloS one, 9(4), e95756.

    PubMed  PubMed Central  Article  Google Scholar 

  104. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over fifty years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835.

    Article  Google Scholar 

  105. Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.

    PubMed  Article  Google Scholar 

  106. Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1), 157–181.

    PubMed  Article  Google Scholar 

  107. Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763–771.

    Article  Google Scholar 

  108. Zacks, J. M. (2008). Neuroimaging studies of mental rotation: a meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1-19.

    PubMed  Article  Google Scholar 

  109. Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: neglect disrupts the mental number line. Nature, 417(6885), 138-139.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zachary Hawes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hawes, Z., Ansari, D. What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychon Bull Rev 27, 465–482 (2020). https://doi.org/10.3758/s13423-019-01694-7

Download citation

Keywords

  • Spatial skills
  • Numerical skills
  • Spatial visualization
  • Mathematical cognition