Advertisement

On the relation between theory of mind and executive functioning: A developmental cognitive neuroscience perspective

  • Mark Wade
  • Heather Prime
  • Jennifer M. Jenkins
  • Keith O. Yeates
  • Tricia Williams
  • Kang Lee
Theoretical Review

Abstract

Theory of mind (ToM) and executive functioning (EF) show marked interrelatedness across childhood, and developmental psychologists have long been interested in understanding the nature of this association. The present review addresses this issue from a cognitive neuroscience perspective by exploring three hypotheses regarding their functional overlap: (1) ToM relies on EF (EF→ToM); (2) EF relies on ToM (ToM→EF); and (3) ToM and EF are mutually related, owing to shared neural structures or networks (ToM↔EF). Drawing on evidence from normative brain development, neurodevelopmental and neurodegenerative diseases, patient lesion studies, and brain-imaging studies, we suggest that only a strict version of the ToM↔EF proposal of complete neural overlap can be confidently ruled out on the basis of existing evidence. The balance of evidence suggests that separable neurobiological mechanisms likely underlie ToM and EF, with shared mechanisms for domain-general processing that support both abilities. We highlight how future studies may empirically substantiate the nature of the ToM–EF relationship using various biobehavioral approaches.

Keywords

Theory of mind Executive functioning Cognitive neuroscience Neuropsychological Neuroimaging Brain development 

References

  1. Aboulafia-Brakha, T., Christe, B., Martory, M. D., & Annoni, J. M. (2011). Theory of mind tasks and executive functions: A systematic review of group studies in neurology. Journal of Neuropsychology, 5, 39–55.PubMedCrossRefGoogle Scholar
  2. Adenzato, M., & Poletti, M. (2013). Theory of Mind abilities in neurodegenerative diseases: An update and a call to introduce mentalizing tasks in standard neuropsychological assessments. Clinical Neuropsychiatry, 10, 226–234.Google Scholar
  3. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165.Google Scholar
  4. Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3), 663–676.Google Scholar
  5. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16, 17–42.PubMedCrossRefGoogle Scholar
  6. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.PubMedCrossRefGoogle Scholar
  7. Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8, 71–82.PubMedCrossRefGoogle Scholar
  8. Anderson, R. J., Simpson, A. C., Channon, S., Samuel, M., & Brown, R. G. (2013). Social problem solving, social cognition, and mild cognitive impairment in Parkinson’s disease. Behavioral Neuroscience, 127, 184.PubMedCrossRefGoogle Scholar
  9. Apperly, I. A., Samson, D., Chiavarino, C., & Humphreys, G. W. (2004). Frontal and temporo-parietal lobe contributions to theory of mind: Neuropsychological evidence from a false-belief task with reduced language and executive demands. Journal of Cognitive Neuroscience, 16, 1773–1784.PubMedCrossRefGoogle Scholar
  10. Apperly, I. A., Warren, F., Andrews, B. J., Grant, J., & Todd, S. (2011). Developmental continuity in theory of mind: Speed and accuracy of belief–desire reasoning in children and adults. Child Development, 82, 1691–1703.PubMedCrossRefGoogle Scholar
  11. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.PubMedCrossRefGoogle Scholar
  12. Austin, G., Groppe, K., & Elsner, B. (2014). The reciprocal relationship between executive function and theory of mind in middle childhood: A 1-year longitudinal perspective. Frontiers in Psychology, 5.Google Scholar
  13. Bach, L. J., Happe, F., Fleminger, S., & Powell, J. (2000). Theory of mind: Independence of executive function and the role of the frontal cortex in acquired brain injury. Cognitive Neuropsychiatry, 5, 175–192.CrossRefGoogle Scholar
  14. Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14, 110–118.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baker, C. A., Peterson, E., Pulos, S., & Kirkland, R. A. (2014). Eyes and IQ: A meta-analysis of the relationship between intelligence and “Reading the Mind in the Eyes” Intelligence, 44, 78–92.CrossRefGoogle Scholar
  16. Biervoye, A., Dricot, L., Ivanoiu, A., & Samson, D. (2016). Impaired spontaneous belief inference following acquired damage to the left posterior temporoparietal junction. Social Cognitive and Affective Neuroscience, 11, 1513–1520.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353–362.PubMedGoogle Scholar
  18. Bird, C. M., Castelli, F., Malik, O., Frith, U., & Husain, M. (2004). The impact of extensive medial frontal lobe damage on “Theory of Mind” and cognition. Brain, 127, 914–928.PubMedCrossRefGoogle Scholar
  19. Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47, 296–312.PubMedCrossRefGoogle Scholar
  20. Bowman, L. C., Kovelman, I., Hu, X., & Wellman, H. M. (2015). Children’s belief-and desire-reasoning in the temporoparietal junction: Evidence for specialization from functional near-infrared spectroscopy. Frontiers in Human Neuroscience, 9.Google Scholar
  21. Bowman, L. C., Liu, D., Meltzoff, A. N., & Wellman, H. M. (2012). Neural correlates of belief-and desire-reasoning in 7-and 8-year-old children: an event-related potential study. Developmental Science, 15, 618–632.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Broulidakis, M. J., Fairchild, G., Sully, K., Blumensath, T., Darekar, A., & Sonuga-Barke, E. J. (2016). Reduced default mode connectivity in adolescents with conduct disorder. Journal of the American Academy of Child and Adolescent Psychiatry 55, 800–808.PubMedCrossRefGoogle Scholar
  23. Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458–469. doi: https://doi.org/10.1016/j.intell.2012.05.006 CrossRefGoogle Scholar
  24. Bull, R., Phillips, L. H., & Conway, C. A. (2008). The role of control functions in mentalizing: Dual-task studies of theory of mind and executive function. Cognition, 107, 663–672.PubMedCrossRefGoogle Scholar
  25. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.Google Scholar
  26. Caillies, S., Hody, A., & Calmus, A. (2012). Theory of mind and irony comprehension in children with cerebral palsy. Research in Developmental Disabilities, 33, 1380–1388.PubMedCrossRefGoogle Scholar
  27. Calderon, J., Bonnet, D., Courtin, C., Concordet, S., Plumet, M.-H., & Angeard, N. (2010). Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Developmental Medicine and Child Neurology, 52, 1139–1144.PubMedCrossRefGoogle Scholar
  28. Campbell, K. L., & Schacter, D. L. (2017). Aging and the resting state: cognition is not obsolete. Language, Cognition and Neuroscience, 32, 692–694.PubMedCrossRefGoogle Scholar
  29. Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595–616.PubMedCrossRefGoogle Scholar
  30. Carlson, S. M., Mandell, D. J., & Williams, L. (2004). Executive function and theory of mind: stability and prediction from ages 2 to 3. Developmental Psychology, 40, 1105.PubMedCrossRefGoogle Scholar
  31. Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children’s theory of mind. Child Development, 72, 1032–1053.PubMedCrossRefGoogle Scholar
  32. Carlson, S. M., Moses, L. J., & Breton, C. (2002). How specific is the relation between executive function and theory of mind? Contributions of inhibitory control and working memory. Infant and Child Development, 11, 73–92.CrossRefGoogle Scholar
  33. Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., . . . (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences, 108, 14998–15003.CrossRefGoogle Scholar
  34. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal–striatal model. Trends in Cognitive Sciences, 16, 17–26.PubMedCrossRefGoogle Scholar
  35. Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497.PubMedCrossRefGoogle Scholar
  36. Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493–501.PubMedCrossRefGoogle Scholar
  37. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83, 238–251.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain’s most globally connected regions. NeuroImage, 49, 3132–3148.PubMedCrossRefGoogle Scholar
  39. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Costa, A., Peppe, A., Martini, M., Coletta, K., Oliveri, M., Caltagirone, C., & Carlesimo, G. A. (2013). Parkinsonian patients with deficits in the dysexecutive spectrum are impaired on theory of mind tasks. Behavioural Neurology, 27, 523–533. doi: https://doi.org/10.3233/BEN-129018 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Costa, A., Torriero, S., Oliveri, M., & Caltagirone, C. (2008). Prefrontal and temporo-parietal involvement in taking others’ perspective: TMS evidence. Behavioural Neurology, 19, 71–74.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195.PubMedCrossRefGoogle Scholar
  43. Crone, E. A., & Ridderinkhof, K. R. (2011). The developing brain: From theory to neuroimaging and back. Developmental Cognitive Neuroscience, 1, 101–109.PubMedCrossRefGoogle Scholar
  44. Culham, J. C., Cavanagh, P., & Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32, 737–745.PubMedCrossRefGoogle Scholar
  45. David, N., Bewernick, B. H., Cohen, M. S., Newen, A., Lux, S., Fink, G. R., . . . (2006). Neural representations of self versus other: Visual–spatial perspective taking and agency in a virtual ball-tossing game. Journal of Cognitive Neuroscience, 18, 898–910. doi: https://doi.org/10.1162/jocn.2006.18.6.898 PubMedCrossRefGoogle Scholar
  46. David, N., Newen, A., & Vogeley, K. (2008). The “sense of agency” and its underlying cognitive and neural mechanisms. Consciousness and Cognition, 17, 523–534.PubMedCrossRefGoogle Scholar
  47. Davis, S. W., Stanley, M. L., Moscovitch, M., & Cabeza, R. (2017). Resting-state networks do not determine cognitive function networks: a commentary on Campbell and Schacter (2016). Language, Cognition and Neuroscience, 32, 669–673.PubMedCrossRefGoogle Scholar
  48. Decety, J., & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. Neuroscientist, 13, 580–593. doi: https://doi.org/10.1177/1073858407304654 PubMedCrossRefGoogle Scholar
  49. Decety, J., & Sommerville, J. A. (2003). Shared representations between self and other: A social cognitive neuroscience view. Trends in Cognitive Sciences, 7, 527–533.PubMedCrossRefGoogle Scholar
  50. Dennis, M., Agostino, A., Roncadin, C., & Levin, H. (2009). Theory of mind depends on domain-general executive functions of working memory and cognitive inhibition in children with traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 31, 835–847.PubMedCrossRefGoogle Scholar
  51. Dennis, M., Simic, N., Bigler, E. D., Abildskov, T., Agostino, A., Taylor, H. G., … Yeates, K. O. (2013). Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury. Developmental Cognitive Neuroscience, 5, 25–39. doi: https://doi.org/10.1016/j.dcn.2012.11.006 PubMedCrossRefGoogle Scholar
  52. Deoni, S. C., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., … Murphy, D. G. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31, 784–791. doi: https://doi.org/10.1523/JNEUROSCI.2106-10.2011 PubMedCrossRefGoogle Scholar
  53. Devine, R. T., White, N., Ensor, R., & Hughes, C. (2016). Theory of mind in middle childhood: Longitudinal associations with executive function and social competence. Developmental Psychology, 52, 758–771. doi: https://doi.org/10.1037/dev0000105 PubMedCrossRefGoogle Scholar
  54. Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a theory of mind task. NeuroImage, 55, 705–712.PubMedCrossRefGoogle Scholar
  55. Dumontheil, I., Apperly, I. A., & Blakemore, S. J. (2010). Online usage of theory of mind continues to develop in late adolescence. Developmental Science, 13, 331–338.PubMedCrossRefGoogle Scholar
  56. Eggebrecht, A. T., Elison, J. T., Feczko, E., Todorov, A., Wolff, J. J., Kandala, S., … Zwaigenbaum, L. (2017). Joint attention and brain functional connectivity in infants and toddlers. Cerebral Cortex, 27, 1709–1720.PubMedPubMedCentralGoogle Scholar
  57. Eigsti, I. M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B., … Casey, B. J. (2006). Predicting cognitive control from preschool to late adolescence and young adulthood. Psychological Science, 17, 478–484.PubMedCrossRefGoogle Scholar
  58. Ellis, H. D., & Gunter, H. L. (1999). Asperger syndrome: A simple matter of white matter? Trends in Cognitive Sciences, 3, 192–200.PubMedCrossRefGoogle Scholar
  59. Elton, A., & Gao, W. (2014). Divergent task-dependent functional connectivity of executive control and salience networks. Cortex, 51, 56–66.PubMedCrossRefGoogle Scholar
  60. Emerson, R. W., Adams, C., Nishino, T., Hazlett, H. C., Wolff, J. J., Zwaigenbaum, L., … Kandala, S. (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine, 9, eaag2882.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Emerson, R. W., Short, S. J., Lin, W., Gilmore, J. H., & Gao, W. (2015). Network-level connectivity dynamics of movie watching in 6-year-old children. Frontiers in Human Neuroscience, 9, 631. doi: https://doi.org/10.3389/fnhum.2015.00631 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fahie, C. M., & Symons, D. K. (2003). Executive functioning and theory of mind in children clinically referred for attention and behavior problems. Journal of Applied Developmental Psychology, 24, 51–73.CrossRefGoogle Scholar
  63. Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104, 13507–13512.CrossRefGoogle Scholar
  64. Fernyhough, C. (2008). Getting Vygotskian about theory of mind: Mediation, dialogue, and the development of social understanding. Developmental Review, 28, 225–262.CrossRefGoogle Scholar
  65. Fernyhough, C. (2010). Vygotsky, Luria, and the social brain. In B. W. Sokol, U. Muller, J. Carpendale, A. Young, & G. Iarocci (Eds.), Self and social regulation: Social interaction and the development of social understanding and executive functions (pp. 56–79). Oxford: Oxford University Press.CrossRefGoogle Scholar
  66. Fine, C., Lumsden, J., & Blair, R. (2001). Dissociation between “theory of mind” and executive functions in a patient with early left amygdala damage. Brain, 124, 287–298.PubMedCrossRefGoogle Scholar
  67. Fisher, N., & Happe, F. (2005). A training study of theory of mind and executive function in children with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 35, 757–771.PubMedCrossRefGoogle Scholar
  68. Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., . . . (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences, 109, 19620–19625.CrossRefGoogle Scholar
  69. Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012). Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences, 109, 12788–12793.CrossRefGoogle Scholar
  70. Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of “theory of mind.” Trends in Cognitive Sciences, 7, 77–83.PubMedCrossRefGoogle Scholar
  71. Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: An fMRI study of “theory of mind” in verbal and nonverbal tasks. Neuropsychologia, 38, 11–21.PubMedCrossRefGoogle Scholar
  72. Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H., & Lin, W. (2015). Development of human brain cortical network architecture during infancy. Brain Structure and Function, 220, 1173–1186.PubMedCrossRefGoogle Scholar
  73. Gao, W., Gilmore, J. H., Giovanello, K. S., Smith, J. K., Shen, D., Zhu, H., & Lin, W. (2011). Temporal and spatial evolution of brain network topology during the first two years of life. PLoS ONE, 6, e25278. doi: https://doi.org/10.1371/journal.pone.0025278
  74. Gao, W., Gilmore, J. H., Shen, D., Smith, J. K., Zhu, H., & Lin, W. (2013). The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cerebral Cortex, 23, 594–603. doi: https://doi.org/10.1093/cercor/bhs043 PubMedCrossRefGoogle Scholar
  75. Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences, 106, 6790–6795. doi: https://doi.org/10.1073/pnas.0811221106
  76. Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 31.PubMedCrossRefGoogle Scholar
  77. Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry, 45, 836–854.PubMedCrossRefGoogle Scholar
  78. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863.PubMedCrossRefGoogle Scholar
  79. Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728–734.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Giovagnoli, A. R., Franceschetti, S., Reati, F., Parente, A., Maccagnano, C., Villani, F., & Spreafico, R. (2011). Theory of mind in frontal and temporal lobe epilepsy: Cognitive and neural aspects. Epilepsia, 52, 1995–2002.PubMedCrossRefGoogle Scholar
  81. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101, 8174–8179. doi: https://doi.org/10.1073/pnas.0402680101 CrossRefGoogle Scholar
  82. Gökçen, E., Frederickson, N., & Petrides, K. V. (2016). Theory of mind and executive control deficits in typically developing adults and adolescents with high levels of autism traits. Journal of Autism and Developmental Disorders, 46, 2072–2087.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. NeuroImage, 160, 15–31. doi: https://doi.org/10.1016/j.neuroimage.2017.01.079 PubMedCrossRefGoogle Scholar
  84. Grossmann, T. (2015). The development of social brain functions in infancy. Psychological Bulletin, 141, 1266–1287. doi: https://doi.org/10.1037/bul0000002 PubMedCrossRefGoogle Scholar
  85. Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013). Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. Journal of Neuroscience, 33, 18618–18630.PubMedCrossRefGoogle Scholar
  86. Gweon, H., Dodell-Feder, D., Bedny, M., & Saxe, R. (2012). Theory of mind performance in children correlates with functional specialization of a brain region for thinking about thoughts. Child Development, 83, 1853–1868. doi: https://doi.org/10.1111/j.1467-8624.2012.01829.x PubMedCrossRefGoogle Scholar
  87. Hartwright, C. E., Apperly, I. A., & Hansen, P. C. (2012). Multiple roles for executive control in belief-desire reasoning: Distinct neural networks are recruited for self perspective inhibition and complexity of reasoning. NeuroImage, 61, 921–930.PubMedCrossRefGoogle Scholar
  88. Henry, J. D., Phillips, L. H., Beatty, W. W., McDonald, S., Longley, W. A., Joscelyne, A., & Rendell, P. G. (2009). Evidence for deficits in facial affect recognition and theory of mind in multiple sclerosis. Journal of the International Neuropsychological Society, 15, 277–285. doi: https://doi.org/10.1017/S1355617709090195 PubMedCrossRefGoogle Scholar
  89. Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876–885.PubMedCrossRefGoogle Scholar
  90. Hughes, C. (1998). Executive function in preschoolers: Links with theory of mind and verbal ability. British Journal of Developmental Psychology, 16, 233–253. doi: https://doi.org/10.1111/j.2044-835X.1998.tb00921.x CrossRefGoogle Scholar
  91. Hughes, C., & Ensor, R. (2007). Executive function and theory of mind: Predictive relations from ages 2 to 4. Developmental Psychology, 43, 1447–1459. doi: https://doi.org/10.1037/0012-1649.43.6.1447 PubMedCrossRefGoogle Scholar
  92. Hull, J. V., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2016). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205. doi: https://doi.org/10.3389/fpsyt.2016.00205 PubMedGoogle Scholar
  93. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  94. Igelström, K. M., & Graziano, M. S. A. (2017). The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia, 105, 70–83. doi: https://doi.org/10.1016/j.neuropsychologia.2017.01.001 PubMedCrossRefGoogle Scholar
  95. Joseph, R. M. (2004). The relationship of theory of mind and executive functions to symptom type and severity in children with autism. Development and Psychopathology, 16, 137–155.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kalbe, E., Schlegel, M., Sack, A. T., Nowak, D. A., Dafotakis, M., Bangard, C., . . . (2010). Dissociating cognitive from affective theory of mind: A TMS study. Cortex, 46, 769–780. doi: https://doi.org/10.1016/j.cortex.2009.07.010 PubMedCrossRefGoogle Scholar
  97. Kan, I. P., & Thompson-Schill, S. L. (2004). Selection from perceptual and conceptual representations. Cognitive, Affective, & Behavioral Neuroscience, 4, 466–482. doi: https://doi.org/10.3758/CABN.4.4.466 CrossRefGoogle Scholar
  98. Kanske, P., Böckler, A., Trautwein, F. M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain–behavior relations for empathy and Theory of Mind. NeuroImage, 122, 6–19.PubMedCrossRefGoogle Scholar
  99. Kemmer, P. B., Guo, Y., Wang, Y., & Pagnoni, G. (2015). Network-based characterization of brain functional connectivity in Zen practitioners. Frontiers in Psychology, 6, 603. doi: https://doi.org/10.3389/fpsyg.2015.00603 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kharitonova, M., Martin, R. E., Gabrieli, J. D. E., & Sheridan, M. A. (2013). Cortical gray-matter thinning is associated with age-related improvements on executive function tasks. Developmental Cognitive Neuroscience, 6, 61–71.PubMedCrossRefGoogle Scholar
  101. Khetani, A. M., Brooks, B. L., Mikrogianakis, A., & Barlow, K. M. (2016). Incorporating a computerized cognitive battery into the emergency department care of pediatric mild traumatic brain injuries—Is it feasible? Pediatric Emergency Care. Advance online publication. doi: https://doi.org/10.1097/PEC.0000000000000959
  102. Kloo, D., & Perner, J. (2003). Training transfer between card sorting and false belief understanding: Helping children apply conflicting descriptions. Child Development, 74, 1823–1839.PubMedCrossRefGoogle Scholar
  103. Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 12176–12182.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ko, J. H., Monchi, O., Ptito, A., Bloomfield, P., Houle, S., & Strafella, A. P. (2008). Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: A TMS-[(11)C]raclopride PET study. European Journal of Neuroscience, 28, 2147–2155. doi: https://doi.org/10.1111/j.1460-9568.2008.06501.x PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kobayashi, C., Glover, G. H., & Temple, E. (2007). Cultural and linguistic effects on neural bases of “Theory of Mind” in American and Japanese children. Brain Research, 1164, 95–107.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Konrad, K., & Eickhoff, S. B. (2010). Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Human Brain Mapping, 31, 904–916.PubMedCrossRefGoogle Scholar
  107. Kraemer, M., Herold, M., Uekermann, J., Kis, B., Wiltfang, J., Daum, I., . . . (2013). Theory of mind and empathy in patients at an early stage of relapsing remitting multiple sclerosis. Clinical Neurology and Neurosurgery, 115, 1016–1022. doi: https://doi.org/10.1016/j.clineuro.2012.10.027 PubMedCrossRefGoogle Scholar
  108. Laisney, M., Bon, L., Guiziou, C., Daluzeau, N., Eustache, F., & Desgranges, B. (2013). Cognitive and affective theory of mind in mild to moderate Alzheimer’s disease. Journal of Neuropsychology, 7, 107–120.PubMedCrossRefGoogle Scholar
  109. Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214, 579–591.PubMedCrossRefGoogle Scholar
  110. Lang, B., & Perner, J. (2002). Understanding of intention and false belief and the development of self-control. British Journal of Developmental Psychology, 20, 67–76.CrossRefGoogle Scholar
  111. Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior cingulate cortex. Journal of Neuroscience, 32, 215–222.PubMedCrossRefGoogle Scholar
  112. Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718–729.CrossRefGoogle Scholar
  113. Leopold, A., Krueger, F., Dal Monte, O., Pardini, M., Pulaski, S. J., Solomon, J., & Grafman, J. (2012). Damage to the left ventromedial prefrontal cortex impacts affective theory of mind. Social Cognitive and Affective Neuroscience, 7, 871–880. doi: https://doi.org/10.1093/scan/nsr071 PubMedCrossRefGoogle Scholar
  114. Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289. doi: https://doi.org/10.1146/annurev.psych.58.110405.085654 PubMedCrossRefGoogle Scholar
  115. Liu, D., Sabbagh, M. A., Gehring, W. J., & Wellman, H. M. (2009). Neural correlates of children’s theory of mind development. Child Development, 80, 318–326.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Long, X., Benischek, A., Dewey, D., & Lebel, C. (2017). Age-related functional brain changes in young children. NeuroImage, 155, 322–330. doi: https://doi.org/10.1016/j.neuroimage.2017.04.059 PubMedCrossRefGoogle Scholar
  117. Lough, S., Gregory, C., & Hodges, J. R. (2001). Dissociation of social cognition and executive function in frontal variant frontotemporal dementia. Neurocase, 7, 123–130.PubMedCrossRefGoogle Scholar
  118. Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The default mode network in healthy individuals: A systematic review and meta-analysis. Brain Connectivity, 7, 25–33.PubMedCrossRefGoogle Scholar
  119. Marcovitch, S., O’Brien, M., Calkins, S. D., Leerkes, E. M., Weaver, J. M., & Levine, D. W. (2015). A longitudinal assessment of the relation between executive function and theory of mind at 3, 4, and 5 years. Cognitive Development, 33, 40–55.PubMedCrossRefGoogle Scholar
  120. Mars, R. B., Sallet, J., Schüffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. (2012). Connectivity-based subdivisions of the human right “temporoparietal junction area”: Evidence for different areas participating in different cortical networks. Cerebral Cortex, 22, 1894–1903. doi: https://doi.org/10.1093/cercor/bhr268 PubMedCrossRefGoogle Scholar
  121. McAlister, A. R., & Peterson, C. C. (2013). Siblings, theory of mind, and executive functioning in children aged 3–6 years: New longitudinal evidence. Child Development, 84, 1442–1458. doi: https://doi.org/10.1111/cdev.12043 PubMedCrossRefGoogle Scholar
  122. McKinnon, M. C., & Moscovitch, M. (2007). Domain-general contributions to social reasoning: Theory of mind and deontic reasoning re-explored. Cognition, 102, 179–218.PubMedCrossRefGoogle Scholar
  123. Meinhardt, J. R., Kühn-Popp, N., Sommer, M., & Sodian, B. (2012). Distinct neural correlates underlying pretense and false belief reasoning: Evidence from ERPs. NeuroImage, 63, 623–631.PubMedCrossRefGoogle Scholar
  124. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  125. Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276–291.CrossRefGoogle Scholar
  126. Moore, C. (2007). Understanding self and others in the second year. In C. A. Brownell & C. B. Kopp (Eds.), Socioemotional development in the toddler years: Transitions and transformations (pp. 43–65). New York: Guilford Press.Google Scholar
  127. Moritz, S., Birkner, C., Kloss, M., Jahn, H., Hand, I., Haasen, C., & Krausz, M. (2002). Executive functioning in obsessive-compulsive disorder, unipolar depression, and schizophrenia. Archives of Clinical Neuropsychology, 17, 477–483.Google Scholar
  128. Müller, U., Jacques, S., Brocki, K., & Zelazo, P. D. (2009). The executive functions of language on preschool children. In A. Winsler, C. Fernyhough, & I. Montero García-Celay (Eds.), Private speech, executive functioning, and the development of verbal self-regulation (pp. 53–68). New York: Cambridge University Press.Google Scholar
  129. Müller, U., Liebermann-Finestone, D. P., Carpendale, J. I., Hammond, S. I., & Bibok, M. B. (2012). Knowing minds, controlling actions: The developmental relations between theory of mind and executive function from 2 to 4 years of age. Journal of Experimental Child Psychology, 111, 331–348.PubMedCrossRefGoogle Scholar
  130. Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current Directions in Psychological Science, 16, 269–274.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nigg, J. T. (2017). On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58, 361–383.PubMedCrossRefGoogle Scholar
  132. Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science, 8, 74–87.PubMedCrossRefGoogle Scholar
  133. Oh, S., & Lewis, C. (2008). Korean preschoolers’ advanced inhibitory control and its relation to other executive skills and mental state understanding. Child Development, 79, 80–99.PubMedCrossRefGoogle Scholar
  134. Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: An fMRI study based on individual differences. NeuroImage, 21, 623–631.PubMedCrossRefGoogle Scholar
  135. Osaka, N., Otsuka, Y., Hirose, N., Ikeda, T., Mima, T., Fukuyama, H., & Osaka, M. (2007). Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neuroscience Letters, 418, 232–235. doi: https://doi.org/10.1016/j.neulet.2007.01.087
  136. Özdem, C., Brass, M., Van der Cruyssen, L., & Van Overwalle, F. (2017). The overlap between false belief and spatial reorientation in the temporo-parietal junction: The role of input modality and task. Social Neuroscience, 12, 207–217.PubMedCrossRefGoogle Scholar
  137. Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1991). Executive function deficits in high-functioning autistic individuals: relationship to theory of mind. Journal of Child Psychology and Psychiatry, 32, 1081–1105.PubMedCrossRefGoogle Scholar
  138. Pardini, M., Emberti Gialloreti, L., Mascolo, M., Benassi, F., Abate, L., Guida, S., … Cocito, L. (2013). Isolated theory of mind deficits and risk for frontotemporal dementia: A longitudinal pilot study. Journal of Neurology, Neurosurgery & Psychiatry, 84, 818–821. doi: https://doi.org/10.1136/jnnp-2012-303684 CrossRefGoogle Scholar
  139. Payne, J. M., Porter, M., Pride, N. A., & North, K. N. (2016). Theory of mind in children with Neurofibromatosis Type 1. Neuropsychology, 30, 439–448. doi: https://doi.org/10.1037/neu0000262 PubMedCrossRefGoogle Scholar
  140. Pellicano, E. (2007). Links between theory of mind and executive function in young children with autism: clues to developmental primacy. Developmental Psychology, 43, 974–990. doi: https://doi.org/10.1037/0012-1649.43.4.974 PubMedCrossRefGoogle Scholar
  141. Perner, J. (1991). Understanding the representational mind. Cambridge: MIT Press.Google Scholar
  142. Perner, J., & Aichhorn, M. (2008). Theory of mind, language and the temporoparietal junction mystery. Trends in Cognitive Sciences, 12, 123–126.PubMedCrossRefGoogle Scholar
  143. Perner, J., Kain, W., & Barchfeld, P. (2002). Executive control and higher-order theory of mind in children at risk of ADHD. Infant and Child Development, 11, 141–158.CrossRefGoogle Scholar
  144. Perner, J., & Lang, B. (1999). Development of theory of mind and executive control. Trends in Cognitive Sciences, 3, 337–344.PubMedCrossRefGoogle Scholar
  145. Perner, J., & Lang, B. (2000). Theory of mind and executive function: Is there a developmental relationship? In S. Baron-Cohen, H. Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds: Perspectives from developmental cognitive neuroscience (2nd., pp. 150–181). New York: Oxford University Press.Google Scholar
  146. Perner, J., Stummer, S., & Lang, B. (1999). Executive functions and theory of mind: Cognitive complexity or functional dependence? In P. D. Zelazo, J. W. Astington, & D. R. Olson (Eds.), Developing theories of intention: Social understanding and self-control (pp. 133–152). Mahwah: Erlbaum.Google Scholar
  147. Pilowsky, T., Yirmiya, N., Arbelle, S., & Mozes, T. (2000). Theory of mind abilities of children with schizophrenia, children with autism, and normally developing children. Schizophrenia Research, 42, 145–155.PubMedCrossRefGoogle Scholar
  148. Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72, 692–697.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.PubMedCrossRefGoogle Scholar
  150. Powell, L. J., & Carey, S. (2017). Executive function depletion in children and its impact on theory of mind. Cognition, 164, 150–162.PubMedCrossRefGoogle Scholar
  151. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 798–813.PubMedCrossRefGoogle Scholar
  152. Qureshi, A. W., Apperly, I. A., & Samson, D. (2010). Executive function is necessary for perspective selection, not Level-1 visual perspective calculation: Evidence from a dual-task study of adults. Cognition, 117, 230–236.PubMedCrossRefGoogle Scholar
  153. Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P., & Banich, M. T. (2015). Resting-state networks predict individual differences in common and specific aspects of executive function. NeuroImage, 104, 69–78.PubMedCrossRefGoogle Scholar
  154. Reineberg, A. E., & Banich, M. T. (2016). Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Human Brain Mapping, 37, 2959–2975. doi: https://doi.org/10.1002/hbm.23219 PubMedCrossRefGoogle Scholar
  155. Robinson, K. E., Fountain-Zaragoza, S., Dennis, M., Taylor, H. G., Bigler, E. D., Rubin, K., … Yeates, K. O. (2014). Executive functions and theory of mind as predictors of social adjustment in childhood traumatic brain injury. Journal of Neurotrauma, 31, 1835–1842. doi: https://doi.org/10.1089/neu.2014.3422 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Rothmayr, C., Sodian, B., Hajak, G., Döhnel, K., Meinhardt, J., & Sommer, M. (2011). Common and distinct neural networks for false-belief reasoning and inhibitory control. NeuroImage, 56, 1705–1713.PubMedCrossRefGoogle Scholar
  157. Rowe, A. D., Bullock, P. R., Polkey, C. E., & Morris, R. G. (2001). “Theory of mind” impairments and their relationship to executive functioning following frontal lobe excisions. Brain, 124, 600–616.PubMedCrossRefGoogle Scholar
  158. Rubia, K. (2013). Functional brain imaging across development. European Child and Adolescent Psychiatry, 22, 719–731.PubMedCrossRefGoogle Scholar
  159. Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: A neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 17, 2475–2480.PubMedCrossRefGoogle Scholar
  160. Rushworth, M. F. (2008). Intention, choice, and the medial frontal cortex. Annals of the New York Academy of Sciences, 1124, 181–207.PubMedCrossRefGoogle Scholar
  161. Russell, J. (1996). Agency: Its role in mental development. 1st Edition, Psychology Press, Hove.Google Scholar
  162. Ryan, N. P., Catroppa, C., Beare, R., Silk, T. J., Hearps, S. J., Beauchamp, M. H., . . . (2017). Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: A neural systems perspective. Social Cognitive and Affective Neuroscience, 12, 1414–1427. doi: https://doi.org/10.1093/scan/nsx066 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ryan, N. P., Catroppa, C., Cooper, J. M., Beare, R., Ditchfield, M., Coleman, L., . . . (2015). The emergence of age-dependent social cognitive deficits after generalized insult to the developing brain: A longitudinal prospective analysis using susceptibility-weighted imaging. Human Brain Mapping, 36, 1677–1691.PubMedCrossRefGoogle Scholar
  164. Sabbagh, M. A., Bowman, L. C., Evraire, L. E., & Ito, J. (2009). Neurodevelopmental correlates of theory of mind in preschool children. Child Development, 80, 1147–1162.PubMedCrossRefGoogle Scholar
  165. Santiesteban, I., Kaur, S., Bird, G., & Catmur, C. (2017). Attentional processes, not implicit mentalizing, mediate performance in a perspective-taking task: Evidence from stimulation of the temporoparietal junction. NeuroImage, 155, 305–311.PubMedCrossRefGoogle Scholar
  166. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind.” NeuroImage, 19, 1835–1842.PubMedCrossRefGoogle Scholar
  167. Saxe, R., Moran, J. M., Scholz, J., & Gabrieli, J. (2006a). Overlapping and non-overlapping brain regions for theory of mind and self reflection in individual subjects. Social Cognitive and Affective Neuroscience, 1, 229–234. doi: https://doi.org/10.1093/scan/nsl034 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Saxe, R., Schulz, L. E., & Jiang, Y. V. (2006b). Reading minds versus following rules: Dissociating theory of mind and executive control in the brain. Social Neuroscience, 1, 284–298.PubMedCrossRefGoogle Scholar
  169. Saxe, R. R., Whitfield-Gabrieli, S., Scholz, J., & Pelphrey, K. A. (2009). Brain regions for perceiving and reasoning about other people in school-aged children. Child Development, 80, 1197–1209.PubMedCrossRefGoogle Scholar
  170. Schenkel, L., Marlow-O’Connor, M., Moss, M., Sweeney, J., & Pavuluri, M. (2008). Theory of mind and social inference in children and adolescents with bipolar disorder. Psychological Medicine, 38, 791–800.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R., & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17, 457–467.PubMedCrossRefGoogle Scholar
  172. Scholz, J., Triantafyllou, C., Whitfield-Gabrieli, S., Brown, E. N., & Saxe, R. (2009). Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS ONE, 4, e4869. doi: https://doi.org/10.1371/journal.pone.0004869 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34.CrossRefGoogle Scholar
  174. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356. doi: https://doi.org/10.1523/JNEUROSCI.5587-06.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Shamay-Tsoory, S. G., & Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia, 45, 3054–3067.PubMedCrossRefGoogle Scholar
  176. Shamay-Tsoory, S. G., Tibi-Elhanany, Y., & Aharon-Peretz, J. (2006). The ventromedial prefrontal cortex is involved in understanding affective but not cognitive theory of mind stories. Social Neuroscience, 1, 149–166.PubMedCrossRefGoogle Scholar
  177. Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired affective theory of mind is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18, 55–67.PubMedCrossRefGoogle Scholar
  178. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679. doi: https://doi.org/10.1038/nature04513 PubMedCrossRefGoogle Scholar
  179. Shaw, P., Lawrence, E., Radbourne, C., Bramham, J., Polkey, C., & David, A. (2004). The impact of early and late damage to the human amygdala on “theory of mind” reasoning. Brain, 127, 1535–1548.PubMedCrossRefGoogle Scholar
  180. Sheridan, M., Kharitonova, M., Martin, R. E., Chatterjee, A., & Gabrieli, J. D. E. (2014). Neural substrates of the development of cognitive control in children ages 5–10 years. Journal of Cognitive Neuroscience, 26, 1840–1850.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148–159.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46, 224–232.PubMedCrossRefGoogle Scholar
  183. Sommer, M., Meinhardt, J., Eichenmüller, K., Sodian, B., Döhnel, K., & Hajak, G. (2010). Modulation of the cortical false belief network during development. Brain Research, 1354, 123–131.PubMedCrossRefGoogle Scholar
  184. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 8223–8231.PubMedCrossRefGoogle Scholar
  185. Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30, 3704–3718.PubMedCrossRefGoogle Scholar
  186. Spreng, R. N., & Grady, C. L. (2010). Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. Journal of Cognitive Neuroscience, 22, 1112–1123.PubMedCrossRefGoogle Scholar
  187. Stone, V. E., Baron-Cohen, S., & Knight, R. T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10, 640–656.PubMedCrossRefGoogle Scholar
  188. Stone, V. E., & Gerrans, P. (2006). What’s domain-specific about theory of mind? Social Neuroscience, 1, 309–319.PubMedCrossRefGoogle Scholar
  189. Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 759–765.PubMedCrossRefGoogle Scholar
  190. Stuss, D. T., Gallup, G. G., Jr., & Alexander, M. P. (2001). The frontal lobes are necessary for “theory of mind.” Brain, 124, 279–286.PubMedCrossRefGoogle Scholar
  191. Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., . . . (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388–402.PubMedCrossRefGoogle Scholar
  192. Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. NeuroImage, 52, 290–301.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Tager-Flusberg, H., Sullivan, K., & Boshart, J. (1997). Executive functions and performance on false belief tasks. Developmental Neuropsychology, 13, 487–493. doi: https://doi.org/10.1080/87565649709540689 CrossRefGoogle Scholar
  194. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404, 190–193.PubMedCrossRefGoogle Scholar
  195. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148–159. doi: https://doi.org/10.1016/j.tins.2006.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Tomasello, M. (2001). Perceiving intentions and learning words in the second year of life. In M. Tomasello & E. Bates (Eds.), Essential readings in developmental psychology. Language development: The essential readings (pp. 111–128). Malden: Blackwell.Google Scholar
  197. Tomasi, D., & Volkow, N. D. (2011). Association between functional connectivity hubs and brain networks. Cerebral Cortex, 21, 2003–2013.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self-other discrimination. Social Cognitive and Affective Neuroscience, 1, 65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31, 18578–18589.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Uekermann, J., Kraemer, M., Abdel-Hamid, M., Schimmelmann, B. G., Hebebrand, J., Daum, I., … Kis, B. (2010). Social cognition in attention-deficit hyperactivity disorder (ADHD). Neuroscience & Biobehavioral Reviews, 34, 734–743. doi: https://doi.org/10.1016/j.neubiorev.2009.10.009 CrossRefGoogle Scholar
  201. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.PubMedCrossRefGoogle Scholar
  202. van den Heuvel, O. A., Van Gorsel, H. C., Veltman, D. J., & Van Der Werf, Y. D. (2013). Impairment of executive performance after transcranial magnetic modulation of the left dorsal frontal-striatal circuit. Human Brain Mapping, 34, 347–355.PubMedCrossRefGoogle Scholar
  203. van der Meer, L., Groenewold, N. A., Nolen, W. A., Pijnenborg, M., & Aleman, A. (2011). Inhibit yourself and understand the other: Neural basis of distinct processes underlying Theory of Mind. NeuroImage, 56, 2364–2374. doi: https://doi.org/10.1016/j.neuroimage.2011.03.053 PubMedCrossRefGoogle Scholar
  204. Van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain Mapping, 30, 829–858.PubMedCrossRefGoogle Scholar
  205. van Veluw, S. J., & Chance, S. A. (2014). Differentiating between self and others: An ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging and Behavior, 8, 24–38.PubMedCrossRefGoogle Scholar
  206. Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 2505–2522.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Veltman, D. J., Rombouts, S. A., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: an fMRI study. NeuroImage, 18, 247–256.PubMedCrossRefGoogle Scholar
  208. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 3328–3342.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Völlm, B. A., Taylor, A. N. W., Richardson, P., Corcoran, R., Stirling, J., McKie, S., … Elliott, R. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. NeuroImage, 29, 90–98. doi: https://doi.org/10.1016/j.neuroimage.2005.07.022 PubMedCrossRefGoogle Scholar
  210. Wade, M., Browne, D. T., Madigan, S., Plamondon, A., & Jenkins, J. M. (2014). Normal birth weight variation and children’s neuropsychological functioning: Links between language, executive functioning, and theory of mind. Journal of the International Neuropsychological Society, 20, 909–919.PubMedCrossRefGoogle Scholar
  211. Wade, M., Browne, D. T., Plamondon, A., Daniel, E., & Jenkins, J. M. (2016). Cumulative risk disparities in children’s neurocognitive functioning: A developmental cascade model. Developmental Science, 19(2), 179–194. doi: https://doi.org/10.1111/desc.12302 PubMedCrossRefGoogle Scholar
  212. Wade, M., & Jenkins, J. M. (2016). Pregnancy hypertension and the risk for neuropsychological difficulties across early development: A brief report. Child Neuropsychology, 22, 247–254. doi: https://doi.org/10.1080/09297049.2014.958070 PubMedCrossRefGoogle Scholar
  213. Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 22, 1679–1693.PubMedCrossRefGoogle Scholar
  214. Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27, 323–340.PubMedCrossRefGoogle Scholar
  215. Walhovd, K. B., Fjell, A. M., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Jr, … Pediatric Imaging, Neurocognition, and Genetics Study. (2012). Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences, 109, 20089–20094. doi: https://doi.org/10.1073/pnas.1208180109 CrossRefGoogle Scholar
  216. Wellman, H. M. (2002). Understanding the psychological world: Developing a theory of mind. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 167–187). Malden: Blackwell. doi: https://doi.org/10.1002/9780470996652.ch8 CrossRefGoogle Scholar
  217. Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72, 655–684.PubMedCrossRefGoogle Scholar
  218. Wellman, H. M., Fang, F., & Peterson, C. C. (2011). Sequential progressions in a theory-of-mind scale: Longitudinal perspectives. Child Development, 82, 780–792.PubMedPubMedCentralCrossRefGoogle Scholar
  219. White, S. J. (2013). The triple I hypothesis: Taking another(’s) perspective on executive dysfunction in autism. Journal of Autism and Developmental Disorders, 43, 114–121.PubMedCrossRefGoogle Scholar
  220. Whiten, A., & Suddendorf, T. (2001). Meta-representation and secondary representation. Trends in Cognitive Sciences, 5, 378. doi: https://doi.org/10.1016/S1364-6613(00)01734-4 CrossRefGoogle Scholar
  221. Wiesmann, C. G., Schreiber, J., Singer, T., Steinbeis, N., & Friederici, A. D. (2017). White matter maturation is associated with the emergence of Theory of Mind in early childhood. Nature Communications, 8, 14692.CrossRefGoogle Scholar
  222. Xiao, Y., Zhai, H., Friederici, A. D., & Jia, F. (2016). The development of the intrinsic functional connectivity of default network subsystems from age 3 to 5. Brain Imaging and Behavior, 10, 50–59.PubMedCrossRefGoogle Scholar
  223. Yantis, S. (2008). The neural basis of selective attention: Cortical sources and targets of attentional modulation. Current Directions in Psychological Science, 17, 86–90.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Yeh, Z. T., Tsai, M. C., Tsai, M. D., Lo, C. Y., & Wang, K. C. (2017). The relationship between theory of mind and the executive functions: Evidence from patients with frontal lobe damage. Applied Neuropsychology: Adult, 24, 342–349.CrossRefGoogle Scholar
  225. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Fischl, B. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.PubMedCrossRefGoogle Scholar
  226. Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., …. Sutherland, A. (2003). The development of executive function in early childhood. Monographs of the Society for Research in Child Development, 68(3), viii–151.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Mark Wade
    • 1
  • Heather Prime
    • 2
  • Jennifer M. Jenkins
    • 3
  • Keith O. Yeates
    • 4
  • Tricia Williams
    • 5
  • Kang Lee
    • 6
  1. 1.Division of Developmental MedicineBoston Children’s Hospital of Harvard Medical SchoolBostonUSA
  2. 2.Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada
  3. 3.Department of Applied Psychology and Human DevelopmentUniversity of TorontoTorontoCanada
  4. 4.Department of Psychology, Hotchkiss Brain Institute, and Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryCanada
  5. 5.Department of PsychologyHospital for Sick ChildrenTorontoCanada
  6. 6.Dr Eric Jackman Institute of Child StudyUniversity of TorontoTorontoCanada

Personalised recommendations